Meteorological Observations: 1983-'84 Antarctic Summer

N. P Singh, 1 K 1 Trivedi, 2 L S Rathore 3 and S R. H. RIZVI 3

ABSTRACT

Extensive meteorological observations of surface and upper air parameters were taken from ship platform during the voyage from Goa to Antarctica and back and alex all Schimacher hill station and at Dakshin Gangotri. The important meteorological events encountered during the expedition and the Antarctic weather have been discussed. Variations in observations taken at different locations and observational amangements made by other countries have also been referred to.

INTRODUCTION

The Third Indian Scientific Expedition to Antarctica 1983-'84 left Marmugoa port on December 3, 1983 on board M S Finnpolaris. The team included two meteorological scientists from India Meteorological Department one meteorological officer from Indian Air Force and one meteorological and oceanographic officer from Indian Navy.

The main objective of the meteorological programme of the expedition was to set up a surface and upper air observatory at Indian permanent base station in Antarctica for continuous recording of meteorological parameters at the station. This was to facilitate, in the long run, obtaining meteorological record of the station. Besides, there were other specific objectives of the meteorological programme for the duration of the vovace and the stay in Antarctica as mentioned below.

- 1 To study synoptic weather systems that affect weather over Antarctica with special reference to their formation intensification movement and decay by collecting information about meteorological data net-work in Antarctica.
- 2 To study day-to-day changes in the structure of the Antarctic troposphere, tropopause and stratosphere by taking 401-MHz radiosonde and omegasonde ascents at regular time intervals.
- $3\,$ $\,$ To take and record synoptic weather observations during the voyage and the stay in Antarctica.
- 4 To provide weather forecasts for the purpose of planning and execution of the activities of the expedition in Antarctica.
- 5 To provide meteorological report and weather forecasts for helicopter operations in
- 6 To study sea-ice conditions and the details of sources and format of such information for Antarctic waters.
 - ¹ Naval Oceanology and Meteorology Cochin
 - ² Air Head Quarters New Delhi
 - 3 India Meteorological Department Lodi Road New Delhi

EQUIPMENT

The meteorological equipment and stores were mainly provided by India Meteorological Depart merit and included the following

- 1 DR wind vane and anemometer with indicator panel
- 2 Temperature sensor and humicap with indicator panel
- 3 Surface ozone recorder
 - Surface ozone recorder
 Muirhead weather facsimile recorder with RS 512 receiver.
- 5 401-MHz Audiomodulated Radiosonde ground equipment (ECIL)
- 6 Omegasonde ground equipment without computer component (Vaishala)
- Micro barograph aneroid barometer precision aneroid barometer whirling psychro meter and belfast hand anemometer cum wind vane
- 8 Optical theodolite fot pilot balloon ascent

In addition the meteorological instruments fitted on the bridge on board M S Finnpolaris for recording surface weather observations from the ship were also used during the expedition.

METEOROLOGICAL DATA

Weather observations made during the voyage

Routine weather observations at three hourly intervals were taken from the ship platform from 03 GMT of December 4, 1983 to 06 GMT of March 29, 1984 except during the period of stay of the ship in Port Louis Mauritius from12 GMT of December 10, to12 GMT of December 14, 1983 and from 12 GMT of March 18, to 12 GMT of March 22, 1984. The complete surface weather data taken from ship platform for the period of stay of the ship south of 60°S at main synoptic hours are given in Table 3.

2 Weather observations at Schirmacher Oasis Field Camp (70°41 S, 11°46 E)

A field camp at Schirmacher Oasis was set up on January 13, 1984 at the same place where field camps were set up by the first and second expeditions. The field camp was about 15 km northwest of Novolazarevskaya a Russian station, and in a small valley surrounded by high rocky terrial. Three-hourly observations were taken from 12 GMT of January 16, to 00 GMT of February 5,1984. The data of the weather observations are given in Table 4.

3 Weather observations at Dakshin Gangotri (70°06'S, 12°00 E)

Weather observatory at base camp started functioning by taking three hourly surface observations from January 12, to February 20, 1984. The observatory was then moved to the nearby permanent station (Dakshin Gangotri) where surface and upper air parameters were to be monitored. Regular observations were started from February 24, 1984.

UPPER AIR OBSERVATIONS

Pilot balloon ascents

Pilot balloon ascents, using optical theodolite, were taken at base camp from January 31, to February 17,1984. During this period sixteen pilot balloon ascents were taken. Most of the flights lasted for less than 10 minutes as the balloon entered into low clouds which were invariably present for most of the time in the month of February. The highest ascent was tracked for 42 minutes.

Upper air soundings

The following gives the number of radiosonde and omegasonde ascents taken from ship during the voyage from Goa to Antarctica and back and during the stay in Antarctica

		Radiosonde	Omegasonde
1	Number of ascents taken during voyage from Goa to Antarctica	2	12
2	Number of ascents taken during ship s stay m Antarctica	-	10
3	Number of ascents taken during return voyage from Atarctica to Goa		10

Besides, 16 radiosonde ascents were taken at the base camp from January 12, to February 29,1984. The results of these ascents are being analysed by the India Meteorological Department. Upper air temperature and height are given in table 5.

IMPORTANT METEOROLOGICAL EVENTS

a. Storms and depressions

One severe cyclonic storm was encountered in the north Indian Ocean. It intensified into a severe tropical storm on December 8, 1983 centred at 11°S and 57°E; and crossed Azleza Island on the evening of December 8, 1983.

Due to the influence of an intense extra-tropical depression located approximately at 54°S and 24°E on December 20,1983, surface winds reached an all time high of 62 knots at 00 GMT of December 21. On this day *Finnpolaris* passed through the worst weather en route to Antarctica. This spell continued till 09 GMT of December 23. 1983.

b. Blizzards

Blizzards, which are associated with snow storms are the most troublesome meteorological events of Antarctic weather. On a few occasions, blizzards were observed during the third expedition.

The month of January was relatively calm with a few blizzards only. The occurrence and intensity of blizzards and their duration increased considerably during the month of February.

The details of blizzards during the months of January and February, 1984 are given in table 1.

TABLE 1

Details of blizzards in January and February 1984

	Time	of commencement	Time	of ending	Max. wind speed observed	Max. wind speed obser-
s/. No.	Hour (GMT)	Date	Hour (GMT)	Date	from the ship platform (knots)	ved at the base camp (knots)
1.	12	Jan. 06	15	Jan. 07	43	
2.	12	Jan. 17	09	Jan. 19	50	
3.	21	Feb. 08	18	Feb. 11	52	58
4.	21	Feb. 21	09	Feb. 24	50	70
5.	06	Feb. 26	15	Feb. 28	72	75

Besides these, there were seven occasions of snow fall and of drifting fog in January, and ten occasions of snow fall and one occasion of fog in February. Ground frost on ropes and metal surfaces was noticed on a counte of occasions.

Table 2 gives a few weather observations taken at the time of severe blizzards during January and February '84, when wind velocity was high and visibility was poor. This also indicates the variation in pressure and temperature during blizzards.

 TABLE 2

 Weather observations taken during severe blizzards in January and February. 1984

D	ate	Time of observations	Surface	wind	Temp. (°C)	Visibility (metres)	Pressure (mb)
		(GMT)	Direction (degrees)	Speed (knots)	(5)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(IIID)
Jan.	07	06	095	53	-3.0	500	985.3
		12	130	38	-2.5	1000	983.8
	18	06	100	36	-2.0	2000	1000.7
Feb.	09	06	100	33	-2.0	1000	976 0
		18	095	45	-1.0	3000	972.8
	10	03	090	36	-2.0	1000	972.8
		06	100	40	-1.0	1000	973 3
		12	085	44	-1.0	1000	975.8
		18	090	40	-1.0	1500	977.3
	22	12	100	30	-5.0	3000	973.8
	23	03	100	42	-8.0	2000	975.8
	26	18	100	60	-10.0	500	968.8
	27	00	080	62	-7.5	500	968.7
		03	100	66	-11.0	100	966.8
		06	100	56	-10.0	300	969.0
		12	095	50	-7.0	300	972.0
		18	085	48	-8.0	300	972.8
	28	00	095	48	-5.5	200	974.3
		03	100	40	-6.0	500	975.8
		06	110	40	-5.5	1000	976.3

COMPARISON OF OBSERVATIONS

- 1. Surface weather observations taken at permanent station were more or less identical with those taken from ship platform except in the case of ambient air temperature which was always lower by 5° to 10°C since this observational site was on the ice-shelf and away from the sea.
- When the observations at the field camp and at the permanent station were compared, it was seen that the ambient air temperature at the Schirmacher Oasis field camp, due to the rocky terrain of the place, was 4° to 5°C higher than those recorded at the permanent station.

RESULTS AND DISCUSSION

Temperature

In Antarctica, air temperature is very low because of high latitude, greater reflectivity of ice surface and lack of thick cloud cover to block outgoing radiation. The data obtained in summer 1983-'84 indicated that the air temperature was generally below zero. On very few occasions, around local noon, above 0°C temperature has been recorded. The highest temperature of 4°C was recorded at the end of January and the lowest -22°C was recorded in the third week of February.

Variation in the wind speed significantly affects the diurnal temperature cycle. Strong winds associated with moving low pressure systems in the ocean surrounding Antarctica invariably raise the atmospheric temperature because they move humid maritime air southward in lower troposphere. Low temperatures are always associated with calm wind conditions.

Solar radiation

Continuous monitoring of incoming solar radiation was carried out with the help of pyranometer. In January 1984 30 33 MJ/m²/ day (megaioules per Sg metre per day) of global radiation was received at Dakshin Gangotri. The hourly values of global radiation recorded in January were higher than in February. The mean noon maximum radiation was 3 08 MJ/m²/hr and 2 82 MJ/m²/hr for first and second fortnight of January respecti vely. During the first half of February the value reduced to 2 31 MJ/m2/hr. There was marked diurnal variation in global radiation due to variation of solar angle. The local midnight minima recorded for the first and the second half of January were 0 22 and 0 10 MJ/m2/hr respectively. Fig 1 gives the plot of diurnal variation of global radiation for January second fortnight and February first fortnight.

The average daily value of global radiation in the first half of January was 33 84 MJ/m²/ day which decreased to 27 69 MJ/m2/day during the second half. These are higher than the values of global radiation received at Indian latitudes in summer

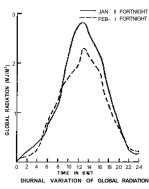
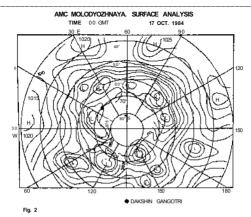



Fig. 1

3. Wind and pressure

Antarctica is encircled by a belt of low pressure. Troughs can be seen on many occasions on surface charts with a number of low pressure systems embedded in them. These systems move in eastward direction. Fig 2 shows similar low pressure systems in the region.

Dakshin Gangotri on most occasions experienced light easterly winds. An analysis of wind data revealed that the direction of wind on majority of occasions varied from 67 5° to 112 5° and did not show any marked diurnal variation in wind direction. However frequency of occurrences of stronger winds was more during local noon. When a low pressure system passed over the station, winds were generally stronger and wind direction changed with northerly component replaced by a southerly component.

4. Relative humidity

Because of low temperature and supersaturated air humidity measurement techniques were not quite satisfactory. Both psychrometer and humicap sensors were used to determine relative humidity during the expedition. It is seen from analysis of relative humidity data that the percentage of relative humidity for most of the time was very high ranging from 60% to 100%. The actual water vapour content of the atmosphere however might be very low because of the low temperatures prevailing in Antarctica.

5. White-out

The term white out is used to describe an atmospheric condition in which there is a lack of contrast between sky and ice surface. There are four types of white-outs observed at Dakshin Gangotri Depending on the nature of weather they are called Overcast white out Fog white-out, Blowing snow white-out and Precipitation white out. Under these conditions the light reflected from the cloud is almost the same as reflected from surface. The intensity of light from all directions become same and there will be no shadow, no perception of depth or height above surface. There will be complete loss of horizon. However, any black object can be recognized very distinctly. This phenomenon which is very dangerous for avaidation was very commonly observed at Dakshin Gangotri.

6. Mirage effects

Due to the differences in the refractive indices between the very cold air close to the ice-shelf and relatively warm air above, complicated mirage effects were observed. The far off objects like icebergs and peaks of mountains seemed to be very near. These objects appeared to be getting lifted when sun was at a low elevation. At sunset, some times, an image of sun was also seen.

FORECASTS AND METEOROLOGICAL REPORTS

Regular briefing was given onboard the ship to the flight commander and the pilots in the morning regarding the weather expected over the area and also the weather expected en route and at the destination for the planned flights. The local weather forecast included the state of sky surface wind upper winds upto 150 m above ground visibility and state of sea. Besides landing reports were given for all flights taking off/landing on the deck and at Dakshin Gangotri. The Leader of the expedition was briefed about the likely deterioration or improvement of weather throughout the stav.

RECEPTION OF FACSIMILE WEATHER CHARTS

Facsimile weather broadcast from New Delhi was received on December 5 1983 when the ship was at 07° 14 N 70° 14 E. After this no facsisimle weather chart was available from New Delhi though the area of reception of New Delhi broadcast extends much south of this position. Facsimile weather charts from Nairobi were received when the ship was in southern Indian Ocean. The facsimile weather charts reception from Pretoid was clear and the weather charts were received regularly covering area from 50°VV to 100°E and south of 10°S upto Antarctic boundary. The facsimile charts from Molodyozhnaya covering the entire southern hemisphere south of 30°S were received from December 23 1983 onwards till the ship crossed 30°S on her way back from Antarctica. Weather charts from Molodyozhnaya like those from Pretoira were received regularly and had high degree of clarity.

ICE-CHARTS AND DESCRIPTION OF ICE-CONDITION

Antarctic ice condition reports dated December 1 and December 8 1983 originated from NOAA. USA were received on board MS Finnpolaris on telefax from Finland. The information contained in these ice charts is satellite derived. There were no surface observations and as such ice information did not contain thickness of sea ice. Ice charts from Molodyozhnaya were regularly received on frequency 9280 kHz on 1st, 11th and 21st of each month on weather facsimile chart recorder at 0850 GMT. During the voyage the first ice berg was noticed when ship was in position 53° 53 S 32° 03 E on December 23 1983 at 0150 GMT. On December 26 1983 the ship encount ered large sea ice zone. The ship was secured to fast ice on December 27 1983 and finally secured for the first time along ice shelf on January 21 1984 in position 69° 57 S 11° 53 E.

VISIT TO NOVOLAZAREVSKAYA

Most of the members of the team visited the Russian and the nearby East German station at Novolazarevskaya (70° 46 S 11° 51 E). These are permanent stations situated in Schirmacher Oasis about 15 km southeast of Indian field camp and are built on rodsy terrain which is completely free of ice or snow in Antarctic summer. There are beautiful fresh water lakes around the station.

Russian station has a modem meteorological observatory for taking surface observations and upper air soundings. These observations are passed on to Molodyozhnaya on Antarctic data net work. It has however no forecasting office of its own. The weather forecasts are received from Molodyozhnaya. In addition to these observations the following are also recorded at the Russian station.

- Total incoming solar radiation
- 2. Total outgoing radiation
- 3. Insolation which is reflected back

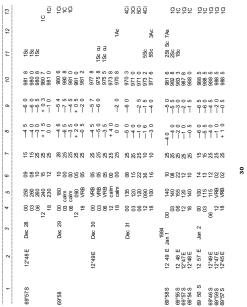
East German Camp is about 500 metres away from the Russian station. It is completely a wooden structure on a slightly raised platform. There is no meteorological observatory at this station. There is, however, a weather satellite receiving ground equipment. The unit is capable of receiving APT pictures from both METEOR and NOAA series of polar orbiting weather satellites. The pictures are complied and sent to Lenigrad Institute of Antarctic Research.

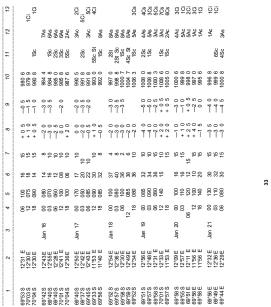
SALVAGE OF METEOROLOGICAL EQUIPMENT

Meteorological instruments left behind by the second expedition in old base camp were retrieved. A precision aneroid barometer, DR wind vane and anemometer and Belford wind vane-cum-anemometer were a few important items. They were handed over to the meteorologist in the wintering team. The emoty hydrogen cylinders were also salvaged.

RECOMMENDATIONS

In order to have better involvement in the study of Antarctic weather, the following recommendations are made.


- It is beneficial to have meteorological data reception facility at the permanent station, so that synoptic weather data over Antarctica may be regularly received, plotted and analysed to understand the weather over the region. To achieve this, an RATT receiver with frequency convertor and teleprinter is required.
- An Automatic Picture Transmission (APT) ground receiving equipment may also be provided to monitor cloud imageries from weather satellites.
- The existing meteorological facility at the permanent station may be strengthened by providing additional equipment for upper wind study.
- The team at the permanent station should consist of an experienced weather forecaster and a specialist in meteorological instruments.


CONCLUSION

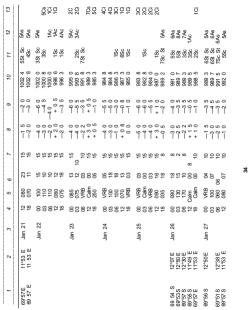
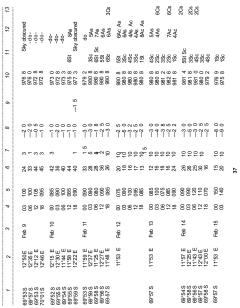
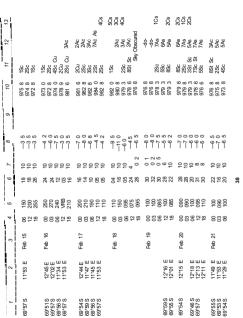

The team has successfully achieved the aim laid down for the expedition by establishing a permanent full-fledged surface and upper air observatory in Antarctica. Valuable observations data have been collected during the voyage, at the field camp and at the permanent station. The weather data of these observations, and of those taken continuously over one year at the permanent station by wintering team are being analysed. The various meteorological research problems are being investigated and the findings would be published.

TABLE 3

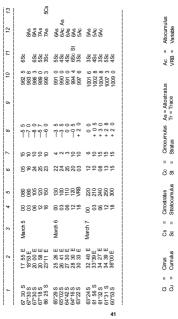
	nt (Octas)	un High	13		8As	red		8As	red	8 As	8As	8 As	6As	8As			2Ci	1Ci	1Ci		0				Altocumulus,	Variable
	amount	Medium	12		8/	opscured	•	8	obscured	8 /	8	80	Cu 6A	3												= \a
	Cloud	топ	#		4St	Sky			Sky		2Sc	2Sc	4Sc, (4Sc,	78c	4Sc		1Sc	1Sc			1Sc	1Sc	1Sc	Ac	\ \ \ \
		(mb)	10		-	8	8	8	00	2	3	80	80	3	00	0	80	0	0	-	8	0	6	0	ıtus,	
		E E	-		973	972	973	975	975	975	976	977	979	980	978	978	977	982	936	988	987	986	982	983	Altostratus,	race,
		WB.	6		0			2 5	0	0	5	5	0	2 0	2 0	3 5	3 5	0	2 2			0 2	7	0 5		II
qių	Temperature													_2	_2	Î	13	+ 2	_	13	1		Ī	٥	A P	_
om s	Tem	8 (2)	80		5	0 0	0	4	5	5	2 5	2 0	2 8	2	9 0	5	2		5		2 0	0 9	0 0	2	Cirrocumulus, As	
ken f		! }												Î	1	Ī	-2	+3	Ī		_2	-15		0 +	irrocu	stratus,
ns ta	100	(km)	^		8	2	2	8	-	80	10	10	10	10	10	10	10	10	10	10	10	10	10	10		n
servatic	_	Speed (knots)	9		12	22	20	16	=	23	23	23	2.0	4	20	20	10	10	15	80	8.0	0.0	0.5	0.5	ပိ	
Surface observations taken from ship	Wind	Direction (Degrees)	5		330	280	280	260	230	130	100	100	140	185	220	230	170	120	130	130	120	calm	VRB	VRB	Cirrostratus,	stratocumulus,
	Time of	tions (GMT)	4		00	03	90	12	18	0.0	03	90	12	18	00	03	90	12	9	00	03	90	12	8	Cir	0 = 0
		Date obs	8	1983	Dec 24					Dec 25					Dec 26					Dec 27					Cs	000
		rougitude	2			24°28'E	23°27'E	21°11'E	19°07'E	17°15'E	16°04'E	14°53'E	12°52'E	12°33'E	12°02'E	11°55'E	11°48'E	11°38'E	12°39'E	12°49'E		12°48'E			Cirrus,	Cumulus,
	-	ĭ			2	7	2	2	-	_			_	-	-		•	•		,,						II
		ramnoe	1		58°54'S	59°26'S	59°57'S	80°57'S	61°51'S	62°39'S	63°12'S	63°42'S	64°51'S	66°14'S	67°29'S	68°02'S	68°33'S	8,60,69	69°54'S	89°58'S	8.24°69	69°58'S			Ö ö	3

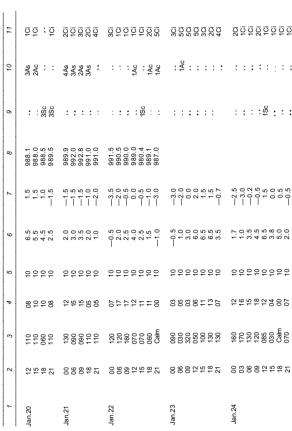

11°53'E	Jan.27	18	Calm	00	10	-2.5	-4.0	991.0	4Sc	3Ac	
	Jan.28	00	190	04	15	-5.0	-6.0	993.2	4Sc		
		03	130	06	15	-4.5	-5.5	994.1	1Sc	2Ac	
		06	050	16	15	-2.0	-3.0	995.0	1Sc		
		12	065	12	15	-1.5	-2.5	997.0	2Sc	1As	1Ci
12°09'E		18	100	12	15	-3.0	-4.5	997.6	2Sc		1Ci
12°50'E	Jan 29	0.0	130	06	15	-5.0	-6.0	999.4	1Sc	140	.,
12 30 L			100	09	15	-6.0	-7.0				1Ci
11°53'F			100	14	15	-4.0	-5.5				
		18	060	12	15	-4.0	-4.5	996.4	7Sc		
	Jan 30	0.0	120	0.5	4	-5.5	-6.0	995.8	7St		
				0.3							
		18	210	06	10	-2.5	-3.0	994.8	6St, Sc	11	
	Jan.31	00	VRB	04	15	-6.0	-6.5	996.5		1 A c	
		03	VRB	05	15	-6.0	-7.0				
		0.6	110	0.5	15	-5.8	-7.0				1Ci
		12	140	0.5	15	-2.0	-2.8				2Ci
		18	200	03	15	-0.5	-1.5	1001.3			2Ci
	Feb.1	00	100	12	10	—4 0	-5.0	1003.0		2Ac	
		03	110	10	10	-6.0	-7.0	1002.8			2Ci
		06	090	10	10	-4.0	-5.8	1002.8			2Ci
		12	070	15	10	-1.5	-2.6	1002.6			1Ci
		18	070	05	10	-1.5	-3.0	1001.0	7Sc, St		
	Feb.2	00	Calm	00	10	-4.0	-5.0	999.4	2St	5As	
		03	190	06	3	-6.0	-7.0	997.8	6St	3As	
-		06	150	05	8	-5.5	-6.0	997.3	7St, Sc	3As	
		12	Calm	0.0	15	-2.0	-2.8	996.2	8St, Sc	4As	
		18	VRB	03	15	-3.0	-4.0	994.1	3St, Sc		
	12°09°E 12°50°E 11°53°E	Jan.28	- Jan.28 00 - 03 - 06 - 12 12°09'E - 18 12°50'E Jan.29 03 11'53'E - 06 - 12 - 18 - Jan.30 00 - 03 - 16 - 18 - Jan.31 00 - 12 - 18 - Feb.1 00 - 12 - 18 - Feb.1 18 - Feb.1 00 - 12 - 18	- Jan.28 00 190 - 03 130 - 06 050 - 12 09'E	- Jan.28 00 190 04 - 03 130 06 - 08 050 16 - 12 065 12 12°09°E	- Jan.28 00 190 04 15 - 03 130 06 15 - 06 050 16 15 - 12 065 12 15 12°09°E - 18 100 12 15 12°50°E Jan.29 00 130 06 15 - 03 100 09 15 11°53°E - 06 100 14 15 - 12 080 20 15 - 18 060 12 15 - 18 060 12 15 - 18 060 12 15 - 18 060 12 15 - 18 060 12 15 - 18 060 12 15 - 18 060 150 10 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 06 10 - 18 210 07 15 15 - 10 10 10 12 10 - 18 200 03 15 - Feb.1 00 100 12 10 - 08 090 10 10 - 12 070 15 10 - 18 2070 5 10 - 18 2070 5 10 - 18 2070 5 10 - 18 2070 5 10 - 18 2070 5 10 - 18 2070 5 10	. Jan.28 00 190 04 15 —5.0	. Jan.28 00 190 04 15 -5.0 -6.0 . 03 130 06 15 -4.5 -5.5 . 06 050 16 15 -2.0 -3.0 . 12 065 12 15 -1.5 -2.5 12 065 12 15 -1.5 -2.5 12 07 Jan.29 00 130 06 15 -5.0 -6.0 . 03 100 09 15 -6.0 -7.0 11*53'E 06 100 14 15 -4.0 -5.5 . 18 060 12 15 -1.0 -3.2 . 18 060 12 15 -4.0 -4.5 . 18 060 12 15 -4.0 -4.5 . 18 060 12 15 -4.0 -4.5 . 18 060 12 15 -4.0 -4.5 . 18 060 12 15 -4.0 -4.5 . 18 060 12 15 -4.0 -4.5 . 18 060 12 15 -4.0 -4.5 . 18 060 12 15 -5.0 -6.0 . 18 060 12 15 -5.0 -6.0 03 100 06 8 -6.0 -6.5 18 060 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0 18 07 08 15 -5.5 -6.0	. Jan.28 00 190 04 15 -5.0 -6.0 993.2	. Jan.28 00 190 04 15 -5.0 -6.0 993.2 45c 03 130 06 15 -4.5 -5.5 994.1 15c 06 050 16 15 -2.0 -3.0 995.0 18c 12 065 12 15 -1.5 -2.5 997.0 28c 12'09'E . 18 100 12 15 -3.0 -4.5 997.6 28c 12'50'E Jan.29 00 130 06 15 -6.0 999.4 15c 03 100 09 15 -6.0 -7.0 998.6 18c 12 080 20 15 -1.0 -3.2 997.8 18c 12 080 12 15 -4.0 -5.5 998.8 18c 18 060 12 15 -4.0 -5.5 998.8 18c 18 060 12 15 -4.0 -4.5 997.8 18c 18 060 12 15 -6.0 999.8 6 18c 18 060 12 15 -6.0 999.8 6 18c 18 060 12 15 -4.0 995.8 781 03 100 06 8 -6.0 -7.0 995.8 781, 8c 06 150 10 10 -2.5 -4.0 995.0 851, 8c 18 200 03 10 -0.5 -2.0 994.0 681, 8c 18 200 03 15 -0.5 996.8 18c 18 210 06 10 -2.5 -3.0 1998.8 18c	. Jan.28 00 190 04 15 -5.0 -6.0 993.2 4Sc 03 130 06 15 -4.5 -5.5 994.1 1Sc 2Ac . 06 050 16 15 -2.0 -3.0 995.0 1Sc 12 065 12 15 -1.5 -2.5 997.0 2Sc 1As 12'09'E . 18 100 12 15 -3.0 -4.5 997.6 2Sc 12'50'E Jan.29 00 130 06 15 -6.0 999.4 1Sc 1Ac . 03 100 09 15 -6.0 -7.0 998.6 1Sc 11'53'E . 08 100 14 15 -4.0 -5.5 998.8 1Sc 11'53'E . 08 100 14 15 -4.0 -5.5 998.8 1Sc 12 080 20 15 -1.0 -3.2 997.8 1Sc 18 060 12 15 -4.0 -4.5 997.8 1Sc 31 00 06 8 -6.0 -7.0 995.8 7St 03 100 06 8 -6.0 -6.5 994.8 7St, Sc SAs . 06 150 10 10 -2.5 -4.0 995.0 SSt, Sc SAs . 12 200 03 10 -0.5 -2.5 994.8 6St, Sc GAs . 18 210 06 10 -2.5 -3.0 994.8 6St, Sc GAs . 18 210 06 10 -2.5 -3.0 996.8 1Sc 18 200 03 15 -6.0 -7.0 996.8 1Sc 2 20 03 15 -6.0 -7.0 996.8 1Sc 2 3an.31 00 VRB 04 15 -6.0 -6.5 996.8 1Sc 18 200 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 03 15 -0.5 -1.5 1001.3 2 20 20 31 15 -0.5 -1.5 1001.3 3 20 20 20 20 20 20 20 20 20 20 20 20 20


6 7

11 12

3 4 5


2	3	4	2	9	7	80	6	10	12	12	13
11°53 E Feb 3 00 200 03 160 06 060		180		889	555	9947	200	994 8 995 8 997 2	28 38 58 38 38 58 38 58	3Ac 4Ac	
		988		2 8	20					1Ac	
Feb 4 00 090 030 030 030 030		060		12 9 9	999	444		995 3 995 8 994 8	75t SS 75t SS 75t SS 75t SS		201
		860		16	566	70	77			4Ac As	20
		85458		2999	55555	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 7	990 0 990 8 991 8 992 4	35° 35° 35° 65° 85° 85° 85° 85° 85° 85° 85° 85° 85° 8	3Ac	<u> </u>
	-	5 58588	00000	8 4 5 5 5	55555	44412		997 4 998 8 1001 0 1003 2 1004 0	8St SS 6St SS 7Sc St SS 5S St SS	6As 3As 2Ac 2Ac	20.0
_		800000	00000	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2222	1777	5 5	1000 999 995 3 995 0	88c St 55c St 28c 28c 28c	2Ac 6Ac 3As	\$2000
ене В В В В В В В В В В В В В В В В В В		\$ £ 5 5 8	00000	2324834	55555	72797		987 8 984 8 984 6 981 6 980 0	2Sc	6As 6As 6As 6As	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
E Feb 9 00		=	9	20	10	45		977 0	13.	7As	



13		4Cs	4Cs	<u> </u>			2Cs	Ç	\$ 8 \$ 8	eAs 6Cs	5Cs 6Cs 7Cs	
12	Sky obscured	-do- -do- 3Ac	4Ac						5As	6Ac 4Ac	3Ac 8As 8As	8As 8As 8As 6Ac 4Ac
11	Sk)	2St Sc	2Sc	2Sc 1Sc 15.	<u> </u>	1Sc	1Sc 2Sc 2Sc	2Sc	28c 18c	38c 48c	4Sc 3Sc 5Sc 5Sc 6Sc Cu	58c 48c 68c 58c 38c
10	972 8	974 3 975 8 976 3 978 4			967 6 965 8 965 3		968 3 972 0 976 1		982 8 985 6	989 8 991 6	991 0 990 8 983 6 987 2 986 0	984 1 983 0 983 0 981 1 982 6
6	 											
8	0 8	2 0 0 0 2 0 0 0	4 4 5 6	—9 0 —7 0	0 0 0 0 1 0 0	18 5	0 2 4 4 0 0 0	3 8 5 F	_2 0 _1 5	22 22	7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	0 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. ر		15 15		<u> </u>	<u>. 5</u>	15 15	15 15	2	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9	45	8 4 4 4 0 4 0 6	25	12 20	13 08 08	03	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	S 80	12 03	90 1	08 06 07 10	24 18 18 18 18
5	085	095 100 110	082	150 200	100 080 075	VRB	110 160 110	VKB 050	340 320	280 300	280 260 290 210 220	200 150 150 145 130
	. 8	00 00 00	2 8	00	9 7 7 8	00	03 06 12	æ e	8 8 8	2 2 8	00 03 12 18	00 03 15 18
3		Feb 28		Feb 29		March 1		C doron	Naice 1		March 3	March 4
		12°41 E 12°54 E 13°05 E	12°42 E 11°50 E	11°53 E	12°23E 12°52E 12°35E	13°24 E	13°25 E 13°34 E 11°56 E	13°14 E 13°27 E	13°25 E 13°37 E	14°59 E 15°32 E	17°15 E 18°15 E 19°21 E 20°03 E 20°00 E	16°57 E 16°00 E 15°16 E 13°56 E 15°28 E
	69°45.S		S 00.02 20.00	S 25°69	69°52 S 69°56 S 69°41 S	S 25° 89	69°36 S 69°37 S 70°08 S	69°40 S	69°04 S 69°49 S	68°26 S 68°30 S	68°31 S 68°31 S 68°29 S 68°20 S	68°00 S 67°50 S 67°31 S

		Surfaceo	bservation	ns taken at	Schumache	er Oasis Fielo	Surface observations taken at Schumacher Oasis Field Camp (70*41 S 11*4E)	S 11°4E)	1	ļ
	ļ	- 3			Tomo	Temperatus	1	Clor	Cloud amount (octas)	as)
Time	ļ	8	2 1	Visibility	100	WB	Pressure (mb)		Medium	High
(GMT) (Degrees)	(Dear	(See	Speed (knots)	(ww)	g ()	(°)		1	1	ľ
2	ļ]	4	5	9		8	6	 	=
	İ						2 020		2Ac	ō
•	2	0	99	9	9 9	9 4		2Sc	1Ac	ō
•	Ξ:	0,	8	2 9	4 + 0 rt	1	979 5	480	2As	į į
21 10	2 5	8 2	2 2	2 2	7	_	981 0	4Sc	1Ac	ટ્ર
		,	! \$	ş	c	Ĩ	983 0	4Sc	1Ac	ğ
	2		2 2	2 9	1	9 0	985 0	4Sc	2Ac	200
	= 8	_	8 4	2 9	- 4	7			2Ac	50
21 110	3 =		<u>υ</u> π	2 6	- 4	9	0 886		3Ac	ē
	Ę		6	10	1 5	0 0	988 2	2Sc	2Ac	ÖÉ
	2	0	50	9	0	90	0 0	3 %	2Ac	Ş
	= ;	0 6	20	9	000	79			3Ac	
	= ;	o u	2 2	00	0 <	9 0		3St 6Sc	2Ac	
	= =		200	ο α		000		280	3Ac	Ş
21	Ξ		28	0 00	3 0			280	3Ac	5
	÷		00	a		1		4Sc	4Ac	2Ci
- 7	7		2 %	0		9		SSc Sc	4Ac	50
			38	o ?		2 0		5Sc	4Ac	\$
	80		25	2 5		-		<u>ب</u>		
	12	. 0	<u>£</u>	2 6		0			2As 2Ac	200
18 12	4	0	90	20	0 9	0 5	994 3		6As	30
_	080	_	03	9		9			/As	2
	51	0	05	10	4 5	0 0	992 5		5As	20
090 120	6 13		2 4	99	9 9	2 0 0	988 2		3As 1Ac	
	8				•					

11 01	ភភភិឌិភិភិភ	14c 10 10 10 10	2Ci	20. 20. 10. 20. 20.	8 <u>5</u> 88 8 5 5
6	28 35 35 36 36	2Sc		<u> </u>	<u> </u>
8	976 3 977 0 979 4 980 2 981 8 983 0	982 0 981 3 981 3 982 0 981 4 981 4			
7	4-1-69	14283201		16222022	140-4401 4810-004 888888080 0048080
9	2 4 4 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 4 rere v rere v 8 m re	
4 5	555555	22222		5555555	
3	25 20 00 00 00 00 00 00 00 00 00 00 00 00				080 080 080 080 080 080 080 080 080 080
2	24 24 24 24 24 24 24 24 24 24 24 24 24 2				
1	Jan 25	Jan 26		Jan 27	
	3	-ÿ 44	ı	•	•

11	<u>5</u> 5 <u>5</u> 5 : : :			: :::::
10	Sc Sc	: :::::::	**********	
6	18c 28c 28c 28c No clo	: ::::::::	:::::: ;:;;	: :::::
8	989.0 989.0 989.0 989.0 989.0	985.5 985.0 985.0 985.5 985.0 985.0 986.0	98990.0 9900.0 9860.0 9860.0 9850.0 992.6 992.6 992.5	990.0 990.2 990.0 992.0 986.0
2	13.5 10.5 10.5 10.5 10.5 10.5	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	11010101000000000000000000000000000000	1.5 - 4.5 - 5.0 - 2.5 - 0.0
9	0.5 3.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	2.0.7.7.2.0.0.0.0.7.2.5.0.2.2.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2	- 6.44.6.1 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.5 - 2.0 - 3.0 - 1.0 1.0
5	555555	r 0 5 5 5 5 8 8	666666 m6m66	5 66666
4	5 t 5 t 5 t 5 t 5 t 5 t 5 t 5 t 5 t 5 t	000000000000000000000000000000000000000	51 00 00 00 00 00 00 00 00 00 00 00 00 00	05 05 04 04
3	140 130 140 150 080 130	Calm Calm Calm Calm Calm Calm Calm Calm	110 110 110 110 130 145 145 146 080 080	080 040 040 140 140
2	00 00 00 00 00 00 00 00 00 00 00 00 00	7 2 2 3 3 6 3 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	98 71 72 73 73 74 75 75 75 76 76 76 76 76 76 76 76 76 76 76 76 76	27 00 00 00 00 00 00 00 00 00 00 00 00 00
1	Jan.29	Jan.30	19 Jan.31 Feb.1	Feb.2

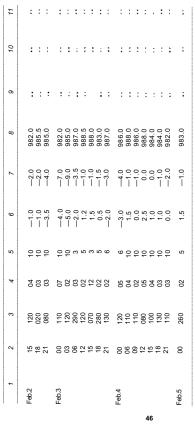


TABLE 5 Upper air temperature and height in geopotential metres at standard Isobaric levels at Dakshin Gangotri during January and February 1984

						Isobari	ic levels (mb)				
	Time of observation		850		700		500	4	100	3	00
Date	observatio	m m	°C	т	°C	т	°C	т	°C	т	°C
25-1-84	16	1196	-12.1	2664	-18.9	5105	-32.9	6644	-43.1	8506	-56.1
26-1-84	15	1206	- 7.1	2678	-15.7	5163	-30.3	6723	-40.7	8633	-53.1
31-1-84	14			2652	-20.5	5052	-33.9	6557	-45.1	8407	-56.7
4-2-84	18	1219	- 8.1	2704	-18.3	5136	-34.9	6665	-45.5	8570	-49.5
6-2-84	13	1293	-11.7	2759	-20.5	5159	-37.3	6680	-45.1	8574	-46.1
8-2-84	13	1138	-11.7	2602	-18.9	5057	-30.3	6619	-38.9	8529	-52.7
12-2-84	17	1129	-10.5	2602	-17.9	5032	-30.1	6592	-39.9	8514	-50.3
13-2-84	12	1121	-11.1	2592	-19.9	5027	-32.7	6571	-40.7	8489	-52.5

				(Isob	aric levels (mb)				
	2	00	1	150	1	25	1	00		80
Date	т	°C	т	°C	т	°C	т	°C	т	°C
25-1-84	11086	-48 1								
26-1-84	11299	-44 3	13219	-44 1						
31-1-84	11042	-45 1								
4-2-84	11269	-44 3	13186	-44 1	14406	-43 9	15896	-42 3	16416	-40 7
6-2-84										
8-2-84	11179	-44 3	13092	-44 5						
12-2-84	11209	-42 9	13130	-41 9						
13-2-84	11154	-43 1	13100	-41 5	14335	-41 5				