Establishment of A New Meteorological Observatory at Maitri and Study of Meteorological Parameters, Ozone Depletion in Antarctic Spring and Solar Radiation during Ninth Antarctic Expedition

SARABJIT SINGH & E. KULANDAIVELU India Meteorological Department, New Delhi

Introduction

The Southern polar continent — Antarctica, is endowed with unique features such as cold temperatures, strong winds, blizzards and the vast glaciers on the earth. Meteorology is considered paramount because it can foresay the weather conditions in any particular region, The synoptic systems around Antarctica are typically inhospitable and dreadful, unlike elsewhere. Prediction of weather in this region is complicated due to unpredicted movements of upper celestial phenomenal changes. In order to get a better prediction, it is necessary to correlate the data obtained by various meteorological observatories situated in the continent, besides satellite cloud imagery. Hitherto i.e. till 1989, the meteorological data were monitored from Dakshin Gangotri which is located on ice-shelf, and the same were quite variable as compared to data from a station located on land. India established its second permanent scientific research station Maitri (Lat 70° 45' 39"S, Long 11° 44' 48"E, Altitude 117M) in the Schirmacher ranges in 1988-89. India Meteorological Department established its full fledged meteorological observatory at Maitri in January 1990 and discontinued meteorological observations from Dakshin Gangotri. The various data collected at Maitri (WMO Station Index 89514) are forwarded to IMD HQ, New Delhi which in turn sends these to other world meteorological centres to help forecasting weather at any time in this region.

Orography of Maitri

All meteorological parameters are variable and also depend upon orographical features of the place. Maitri is situated in the valley of Schirmacher ranges extending upto 7 Km in length and 0.5 to 2 Km in width. Towards its south, high glaciers occupy vast areas extending upto South Pole and towards the north, the ice shelf extends upto about 100 Km. There are also numerous lakes between rocky hills.

Programme

(i) Establishing a new Meteorological Observatory at Maitri and monitoring weather conditions by keeping constant watch.

- (ii) Recording of 3 hourly synoptic observations and disseminating the main 6 hourly synoptic data to IMD, New Delhi for its global exchange programme.
- (iii) To investigate ozone depletion in the Antarctic spring season over this region.
- (iv) To monitor the radiation flux in the upper atmosphere.
- (v) To monitor surface ozone.
- (vi) To do other activities as were done by the previous expeditions.

Installation of Instruments

- A. (i) Stevenson Screen and two wind masts were installed during January 1990.
 - (ii) Due to space constraints in the main station, the installation of self recording instruments, Radiosonde Ground Equipment, APT Recorder, Ozone Generator etc. could be commissioned in mid February 1990 only.
 - (iii) Besides dry bulb thermometer, the maximum and the minimum thermometers were also positioned in the Stevenson Screen.
 - (iv) Electrical thermometer (YSI Thermister) was installed in a mini screen on DCP wind mast at the same height of Stevenson Screen for continuous recording of surface air temperature.
 - (v) Cup generator anemometer and wind vane were installed on the top of the building structure.
 - (vi) The omni-directional antenna and helical antenna were installed at the top structure of the building to receive cloud imagery and signals from upper air soundings, respectively.
 - (vii) Pyranometer was also positioned on top of the building.
- B. The following instruments have been installed in the lab:
 - (i) Radio Sonde Ground Equipment for receiving signals from upper-air soundings (Ozone Sonde, Radio Sonde and Radio Meter Sonde).
 - (ii) Automatic Picture Transmission (APT) receiver-cum-recorder for receiving the visible and infra-red cloud pictures from Polar Orbitting (NOAA-10 and NOAA-11) Satellites.
 - (iii) Temperature recorder for continuous recording of surface air temperature.
 - (iv) Wind direction and speed recorders for continuous recording of wind data.
 - (v) Recorder for continuous monitoring of surface ozone.
 - (vi) Protek recorder for continuous recording of Global Solar Radiation.
 - (vii) Microbarograph for self recording of atmospheric pressure.
 - (viii) Sunphotometer to measure atmospheric turbidity.
- C. Data Collection Platform (DCP)

The DCP Unit was installed at Maitri in mid February 1990. The helical antenna was installed on top of the eastern end of the building. Since Maitri is surrounded by hills, the direct line of sight with the satellite was available from this comer only. The main unit

consisting of Signal Conditioner and DCSTS (Data Conversion Storage and Transmission Sub-System) were installed in the loft. In addition to four sensors (Temperature, Wind Speed, Wind Direction and Pressure) that were already in use, an additional humidity sensor (Humicap) has been associated. The system was commissioned in mid February 1990 after calibration and comparison with ground truth values of various parameters. Since then the data was being transmitted and received at MDUC (Meteorological Data Utilisation Centre) New Delhi through INSAT 1B.

D. Weather Facsimile Recorder

Weather fax recorder was installed in March'90 to receive analysed weather charts from Molodezhnaya and Pretoria. However, charts from Pretoria could not be received due to very weak signals. On an average about two charts per day were received from Molodezhnaya. Charts could not be received during magnetic storms and poor signal days.

Meteorological Data Collected

- Autographic records of atmospheric pressure, temperature, wind, surface ozone and solar radiation.
- (ii) 3-hourly synoptic observations (00, 03, 06,09, 12, 15, 18 and 21 UTC).
- (iii) Upper air radiation flux by Radio Meter Sonde,
- (iv) Vertical ozone and temperature profiles.
- (v) Cloud pictures from NOAA satellites.
- (vi) Fax charts from Molodezhnaya.
- (vii) Sunphotometer observations.

Results and Discussions of Meteorological Data

A. Pressure

The station level pressure has been reduced to mean sea level (MSL) pressure for making a comparative study on synoptic scale. The mean monthly variation of MSL pressure during the period Jan'90 to Jan'91 is shown in Fig. 1A. There were two oscillations of pressure during the period, one peak in the month of May with mean value of 996.0 Mb and the other in November with value of 988.3 Mb. The MSL pressure fell to a low value of 981.6 Mb in February and then steadily rose till May. It fell again gradually till September with a very low value of 980.4 Mb and then again rose gradually. The highest MSL pressure of 1030.5 Mb was recorded in April whilst the lowest value of 948.9 Mb was observed in July.

$B.\,A\,ir\,Temperature$

Monthly mean air temperatures have been depicted in Fig. 1B. The temperature gradually fell from January onwards due to onset of winter, upto August, except July. From August to September temperature rose slightly and thereafter shot up sharply by 10°C in October.

The surface air temperature rose from -16.3°C in June to -10.10° in July. This may perhaps be due to the frequent movement of extra-tropical low pressure systems which

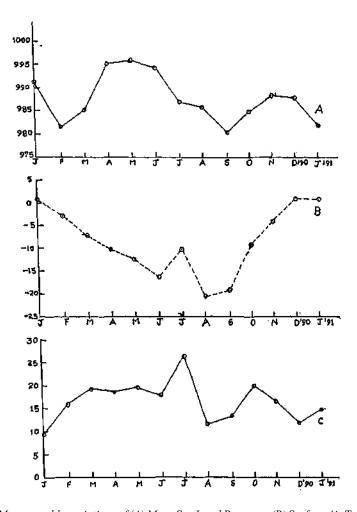


Fig. 1. Mean monthly variations of (A) Mean Sea Level Pressure, (B) Surface Air Temperature and (C) SurfaceWind Speed during January 1990 to January 1991,

caused the warm and moist air drawn from lower latitudes and mixed with dry and cold continental air thus giving rise to the increase in temperature. The highest maximum temperature of 9.0° C was recorded in December and the lowest minimum was -32° C in August.

It was observed that the mean temperature of Maitri was more than that of Dakshin Gangotri by about 8-10 deg during all the months. This is due to the fact that Maitri is situated over rocky area whilst Dakshin Gangotri is on ice shelf. The solar radiations are mostly absorbed by the land during day time. During night, the land emits heat energy as

Table 1: Monthly Weather Summary of Maitri for the Period Jan. 1990 - Jan. 1991

Month	M.S.	M.S.L. Pressure (Mb)	(Mb)	Air 7	Air Temperature (°C)	(°C)	Wind Speed(Knots)	ed(Knots)	No. of OVC	No. of SKC	No. of PPTN
	Highest	Lowest	Mean	Highest	Lowest	Mean	Max	Mean	Days	Days	Days
Jan.'90	1009.8	967.3	991.1	7.8	-7.6	6.0	40	9.4	11	3	10
Feb.'90	9.666	7.896	981.6	3.7	-9.2	-2.9	62	15.9	16	3	1
Mar.'90	999.2	958.8	985.1	-0.2	-18.5	-7.1	72	19.3	6	9	14
Apr.'90	1030.5	971.1	995.2	-1.0	-21.6	-10.1'	09	18.6	9	3	5
May'90	1018.6	977.1	0.966	-2.3	-30.8	-12.3	61	19.7	15	4	6
Jun.'90	1011.1	983.6	994.2	-5.3	-29.5	-16.3	62	17.8	9	15	7
July'90	1012.4	948.9	987.0	9.0-	-21.2	-10.1	70	26.4	19	4	7
Aug.'90	1002.9	966.4	985.9	-8.8	-32.0	-20.5	61	11.5	3	13	S
Sep.'90	1001.3	928.6	980.4	-9.2	-31.5	-19.2	50	13.3	4	10	2
Oct.'90	1011.9	964.9	984.9	1.0	-22.8	-9.2	85	19.9	10	7	9
Nov.'90	1020.4	972.9	988.3	6.2	-16.4	-4.1	50	16.5	4	6	0
Dec.'90	1001.9	963.2	8.7.8	9.0	-5.1	1.0	41	11.8	2	2	S
Jan.'91	994.6	0.096	981.8	8.2	-5.6	6.0	62	14.8	2	9	7
OVC — Ove	OVC — Overcast, SKC — sky clear, PPTN — precipitation	- sky clear, P	PTN — pre	cipitation							

terrestrial radiations and warms the lower atmosphere at Maitri. Solar radiations are mostly reflected back to the space due to high albedo of snow at Dakshin Gangotri and virtually no terrestrial emission take place from ice during night.

C. Wind

Generally Maitri experiences wind speed between 15 and 20 Kts from East-South-East and South-easterly directions. Due to orographical reasons sometimes funnel type of wind also prevails. During the passage of extra-tropical systems, strong gusty winds from south-easterly direction prevail. For a few days in a month, katabatic flow from the south was experienced after 1800 hrs UTC and this phenomenon prevailed almost throughout the year. The variations of monthly mean wind speed is shown in Fig. 1C. There are two peaks, one in July and the other in October. In general, winds are stronger in winter than in summer. In July number of extra tropical systems around the continent were more, which caused strong gusty winds most of the days. July was the windiest month with mean value of 26.4 Kts, nevertheless the highest maximum speed of 85 Kts was recorded in October.

D. Precipitation

In Antarctica, precipitation occurs mainly in the form of snow flakes but rain might also occur during the summer season along the coastal areas around the continent and over the Antarctic peninsula. In the year 1990, Maitri experienced snowfall on 71 days, of which March recorded 14 days of snowfall while November had none. A light rainfall and drizzle was experienced on January 17, 1991. Table 1 gives the monthly weather summary during Jan'90 to Jan'91.

Clouds

Medium type of clouds are common in Antarctica. Chances of low clouds are lesser in winter. Generally cloudless sky prevails in winter. However, due to the passage of low pressure systems a sudden incursion of moisture forms mainly altostratus and altocumulus type of clouds in winter. Chances of formation of convective type of clouds are very rare even in summer at Maitri.

Weather at A Glance during 1990 at Maitri

S.No	Phenomena	Value	Date
1.	Highest Maximum Temperature	9.0°C	14 December
2.	Lowest Minimum Temperature	-32.0°C	18 August
3.	Max MSL Pressure	1030.5 Mb	29 April
4.	Min MSL Pressure	948.9 Mb	30 July
5.	Max Wind Speed	85 Kts	12 October
6.	Warmest month of the year	December with mean temperature of 1.0°C.	

- 7. Coldest month of the year August with mean temperature of -20.5° C.
- 8. Windiest month of the year July with mean wind speed of 26.4
- 9. Warmest day of the year 14 December with mean
- temperature of 5.2°C.

 10. Coldest day of the year 5 September with mean temperature of 28.7°C
- 11. Windiest day of the year 10 July with mean wind speed of 45 Kts.
- 12. Mean temperature of the year -9.2°C
- 13. Mean MSL Pressure of the year 988.1 Mb
- 14. Mean wind speed of the year 16.7 Kts.

Balloon Ascents

A. Ozone-hole studies

To study the fluctuation of the ozone profile and investigate the ozone-hole during Antarctic Spring season, ozone sondes were released from mid Feb'90 onwards at Maitri. At the rate of one ascent per week, 50 ozonesonde ascents in 1990 and 3 in Jan'91 were taken. The maximum ozone concentration varied from 15 Km in winter to 35 Km in summer. The ozone depletion commenced in the last week of August and the ozone was reduced to less than half by the end of September. During the first week of November ozone concentration again built up. Fig. 2 shows the ozone profile during peak period (May), depletion period (September), and building up period (November).

B. Upper-air temperature profile

Temperatures at different standard millibaric levels were calculated from ozonesonde ascents during March'90 to Feb'91 and are given in Table 2. Heights of different isobaric surfaces were also tabulated and are given in Table 3. Monthly mean temperature curves for different levels upto 500 Mb were drawn and are shown in Fig.3. It may be seen from Fig. 3 that the trend of surface temperature was reflected upto 700 Mb and the same did not reflect in the upper troposphere. During July, the lower troposphere is warmer than it is during the preceding and the following months. This is due to frequent movement of extra tropical low pressure systems which brought warm and moist air from lower latitudes and mixed it with cold and dry continental air, upto 700 Mb height only.

C. Low level inversions

During August and September ground inversions generally occur upto 300 M but low level inversions can also be seen at around 2000 M height during other winter months. This is the reason the surface temperature curve intercepts the 900 millibar curve in August.

	70
	-
	á
	Sevels
	Ą
þ	_
_	⋍
•	₻
	<u>_</u>
	ä
	Ξ
- 5	Ì
٠	⋜
	4
	_
	ె
	ā
	ت
	Ü
9	=
	Ξ
- 6	_
-	
•	_
	Ø
	_
	ь
	Ξ
	d
×	ë
	2
-	_
	Ξ.
	9
	2
	v.
	تة
	-
	=
	₽
	ø
	_
	a)
	ē
	Ē
	Ē
	emp
F	emp
E	emp.
E	r
	ir emp
	Air
:	'Air Jemp
	er Air Temp
:	oer Air Temp
:	oper Air Temp
	oper Air Temp
	Upper Air Temp
	Coper Air Temp
	v Upper Air Temp
	ilv Upper Air Temp
	thiv Upper Air Temp
	nthiv Upper Air Temp
	onthiv Upper Air Temp
	Jonthly Upper Air Temp
	Vionthiv Upper Air Lemp
	Monthly Upper Air Temp
	n Monthly Upper Air Lemp
	an Monthly Upper Air Temp
	ean Monthly Upper Air Temp
	lean Monthly Upper Air Temp
	Viean Monthly Upper Air Temp
	Mean Monthly Upper Air Temp
	: Mean Monthly Upper Air Temp
	2 : Viean Monthly Upper Air Temp
	2 : Mean Monthly Upper Air Lemp
	e 2 : Mean Monthly Upper Air Temp
	le 2 : Mean Monthly Upper Air Temp
	ble 2 : Mean Monthly Upper Air Temp
	able 2 : Wean Monthly Upper Air Temperatures over Maitri at Different Millibaric

Month								~	Millibaric levels	c levels			!					
	850	700	009	200	400	300	250	200	150	100	70	50	30	25	20	15	10	2
Mar.'90 -11.3	-11.3	-18.2	-23.3	-30.5	- 40.1	- 47.7	- 45.1 -	- 41.7	, - 41.2	2 -38.6	-39.9	-39.4	- 40.4	-40.5	- 40.4	-35.4	-33.8 -	- 36.7
Apr.	-15.9	-22.0	-26.9	-33.8	- 42.9	52.6	-52.3	- 48.7	7 -50.0	42.9 -52.6 -52.3 - 48.7 -50.0 -51.4 -53.2 -54.7 -54.9 -55.4 -55.2 -53.1 -52.8	-53.2	-54.7	-54.9	-55.4	-55.2 -	-53.1 -	.52.8 -	49.4
May16.7	-16.7	-23.7	-28.7	-35.6	- 44.0	-53.6	-57.7	-58.7	-58.9	-28.7 -35.6 - 44.0 -53.6 -57.7 -58.7 -58.9 -61.6 - 66.4 -69.2 -66.6 -65.6 - 65.0 -64.2	. 66.4	-69.2	-66.6	-65.6 -	. 65.0	-64.2	- 1	
Jun.	-19.6	-24.7	-28.5	-36.6		46.2	-56.4	-63.7	89 -	68.1 -7	-70.4	-74.3	-73.3			-		
Jul.	-15.7	-23.2	-29.3	-37.0	1	46.9 -59.7		-63.5	- 65.4	4 -68.6	- 9:	- 71.5	-80.0		 	I		
Aug.	-19.9	-25.6	-31.8	-39.5	1	49.1 -59.2		-64.1 -	67.3 -	67.3 -70.1 -74.7 -77.6 -78.4	.74.7	-77.6	-78.4	-74.7	-71.3	-73.9		
Sep.	-19.8	-26.1	- 28.4	1 -35.0	.44.8	8 -59.1 -	1 - 60	66.5 -71	-71.9 -74	-74.2 -76.5		27- 6.37-	-75.5 -	- 0.89	65.3	- 60.0	- 0	
Oct.	-13.4	-17.3	-24.1	-33.4	-40.7	-52.9	-58.3	-63.9	-67.0	-24.1 -33.4 -40.7 -52.9 -58.3 -63.9 -67.0 -67.0 -62.2 -56.7 -50.4 -43.9 -46.0	-62.2	-56.7	-50.4	-43.9	-46.0	-	I	
Nov.	-13.1	-19.9	-25.4	-32.8	-42.3		-54.0 -60.3	-61.1	-61.7	-58.8	-50.9	-43.3	-34.3	-30.6 -27.9		-24.5	-18.5	-10.0
Dec.	-3.4	-13.5	-17.7	-25.8	-35.4	-48.8	-52.0	-52.0 -51.4	-50.3	-46.5	-40.4	-40.4 -34.7 -28.3	-28.3	-27.0	-27.0 -26.4	-20.9	-19.9	-15.3
Jan.'91 -4.3 -13.9	-4.3		-18.8	-24.9	-34.4	-45.7	-49.9	-45.8	-24.9 -34.4 -45.7 -49.9 -45.8 -43.8	-41.3	-38.9	-36.4	-38.9 -36.4 -33.3		-33.0 -31.5-30.5	-30.5	-29.0	-26.3
Feb.	-11.3	-18.2	-23.3	-30.5	-40.1	-47.7	-45.1	-41.7	-41.2	-40.1 -47.7 -45.1 -41.7 -41.2 -38.6	-39.9	-39.4	-40.4	-39.9 -39.4 -40.4 -40.5	-40.4 -35.4	-35.4	-33.8	-36.7

Table 3: Mean Height of Standard Isobaric Levels in Geopotential Metres over Maitri

S	36420	34038	I			I	Ι	I	36858	36438	37042	36408
10	29244 32046 36420	30205 34038				I	I	I	31464 3	32310 36438	32123	31435
15	9244 3	27764 3	26772			0	I	I	28472 3	29290 3	29233 3	28850 3
20		25929 2	23660 25016			9 23680	24004	25651	26398 2	27181 2	27197 2	27005 2
25	11311 13269 16033 18706 20765 24251 25491 27013	11106 12978 15621 17926 20084 23345 24510 25929				83 22859	22643	24138	24812	25573	25652	25469
30	24251	23345	6 22556			60 21783	21523	22955	19820 23230	24264	24342	24223
50	20765	20084	17424 19476			18860	18754	19608		20640	20782	20688
70	18706	17926		17298	16929	7 16946	16811	17561	17625	18325	18464	18407
100	16033	15621	12810 15347	15067	15053	10782 12502 14877	10726 12407 14752	15366	15327	13260 15921	16032	13297 16002 18407 20688
150	13269	12978		12637	12621	2 1250	12407	12957	12805	13260	13293	13297
200	11311	11106	11025	10859 12637 15067 17298	9517 10882 12621 15053 16929	0 1078	10726	11198	11019	11387	11373	11368
250	9555	9652	9628	9505	9517	9430	9402	9810	9635	9943	9922	9897
300	8593	8485	8468	8372	8393	8299	8279	8643	8484	8754	8724	8682
400	6672	9659	6279	6504	6538	6441	6414	6726	6587	6802,	6757	6748
500	5118	5053	5052	4987	5024	4942	4901	5197	5045	5215	5163	5177
009	3804	3758	3765	3705	3743	3677	3609	3838	3742	3872	3819	3849
700	2665	2638	2651	-2591	2629	2551	2498	2690	2610	2708	2659	2697
850	1194	1189	1214	1169	1188	1146	1074	1219	1166	1202	1160	1208
Month	Mar.'90	Apr.	Мау	Jun.	Jul.	Aug.	.des	Oct.	Nov.	Dec.	Jan. '91	Feb.

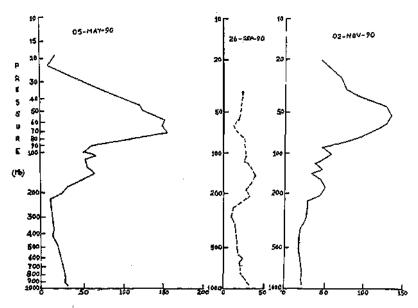
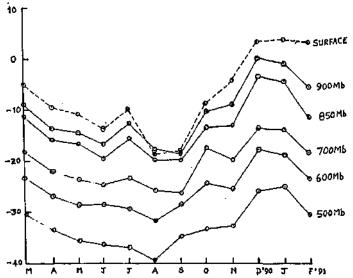



Fig. 2. Sample of ozone profiles during May, September and November 1990.

 $Fig.\ 3.\ Monthly\ mean\ upper-air\ temperature\ up to\ 500\ Mb\ during\ 1990-91.$

D. Radiation flux in the upper atmospheric layers

To investigate the radiation flux in the upper atmosphere and heat transfer in various layers over the region, 10 Radio Meter Sonde ascents were undertaken, after polar night period, mostly before and after blizzards.

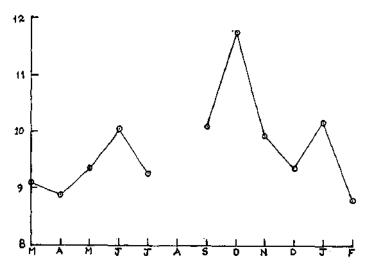


Fig. 4. Mean height of Antarctic tropopause during March 1990 to February 1991.

E. Antarctic tropopause

Using ozonesonde ascents monthly mean heights of tropopause were calculated from March'90 to Feb'91 and are shown in Fig. 4. Tropopause height generally varies from 8 to 10 Km. Highest tropopause (11.7 Km) occurred in October and coldest in September (-73°C). In August the tropopause was not well-marked.

Global Solar Radiation

The polar region receives almost the equal hours of sunshine as do the equatorial regions. Due to the low elevation of sun and high albedo of the snow however most of the solar radiations are reflected back in the polar region to space. The surface absorbs only a little percentage of solar radiations falling over it.

Global solar radiation was monitored using the pyranometer and a protek recorder. Values were tabulated for every 10 minutes in local apparent time (LAT). The hourly mean values of radiations in each month are shown in Table 4. The total radiation for March'90 to Jan'91 is plotted in Fig. 5. During June and July the radiation was nil due to the absence of the sunshine and very low zenith angle of the sun. The second half of the year received more heat energy than the first half. December received the maximum radiation of 48.78 Mega Joules/Sq. Meter a day. This intensity of solar radiation is sufficient to defreeze the Antarctic ice but due to high albedo of snow/ice most of the solar radiations are reflected back to the space without affecting the frozen continent.

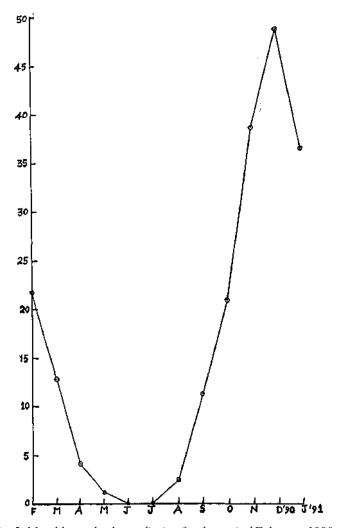
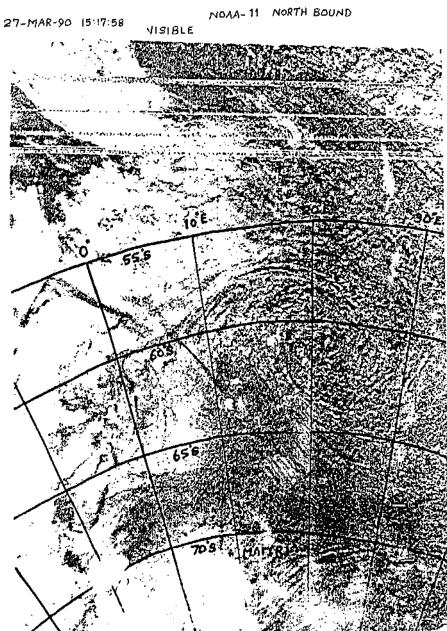
Table 4: Mean Global Radiation in Megajoules per Sq. Metre (MJ/m²) at Maitri from February 1990 to January 1991

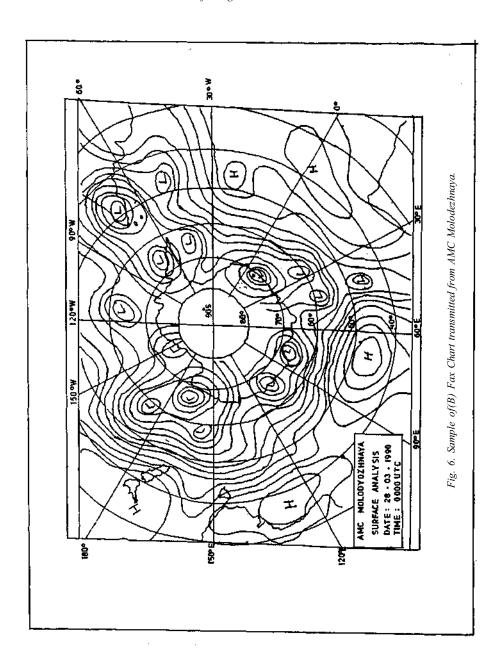
Months					Hour e	Hour ending at local apparent time	cal apparen	t time				
1		2	κ	4	S.	9	7	∞	6	.10	=======================================	12
Feb.90	0.00	0.00	0.00	0.01	0.15	0.43	0.92	1.34	1.62	1.97	2.09	2.19
March	0.00	0.00	0.00	0.00	0.00	90.0	0.25	09.0	0.91	1.23	1.53	1.64
April	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.04	0.20	0.41	0.58	0.70
May	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
June	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	tingh <
July	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Aug.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.07	0.22	0.37	ulandi L4 [.] 0
Sept.	0.00	0.00	0.00	0.00	0.00	0.01	0.13	0.46	0.88	1.20	1.43	aivelu 25 T
Oct.	0.00	0.00	0.00	0.00	0.12	0.36	0.77	1.20	1.55	1.86	2.18	2.36
Nov.	0.02	0.04	0.18	0.53	0.92	1.31	1.77	2.21	2.61	3.03	3.27	3.49
Dec.	0.14	0.33	0.65	0.92	1.25	1.67	2.22	2.67	3.17	3.62	3.93	4.07
Jan.'91	0.02	0.04	0.12	0.42	69.0	1.04	1.55	2.04	2.51	2.88	3.14	3.29

iblishnlent oftiNew,Meteor'ologicctl Obst

Table 4: Contd.

Months					7	Hour ending at local apparent time	g at local	apparent ti	me				
	13	41	15	16	17	18	19	20	21	22	23	24	Total
Feb.'90	2.15	2.24	2.11	1.61	1.29	0.85	0.49	0.19	0.05	0.01	0.00	0.00	21.71
March	1.58	1.55	1.33	1.02	89.0	0.32	0.10	0.00	0.00	0.00	0.00	0.00	12.80
April	0.71	0.63	0.43	0.22	0.07	0.01	0.00	0.00	0.00	0.00	0.00	0.00	4.00
May	0.05	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.00
June	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
My	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Aug.	0.49	0.40	0.24	0.08	0.01	0.00	0.00	0.00	0.00	0.00	0.00	2.36	0.00
Sept.	1.55	1.41	1.17	0.82	0.44	0.14	0.00	0.00	0.00	0.00	0.00	0.00	11.16
Oct	2.28	2.07	1.85	1.59	1.25	0.85	0.43	60.0	0.01	0.00	0.00	0.00	20.82
Nov.	3.38	3.26	3.06	2.80	2.25	1.76	1.29	0.85	0.43	0.12	0.03	0.01	38.62
Dec.	3.90	3.82	3.60	3.14	2.54	2.16	1.71	1.31	0.97	0.59	0.25	0.15	48.78
Jan.'91	1 3.27	3.13	2.88	2.70	2.15	1.69	1.25	0.82	0.52	0.23	0.05	0.02	36.45


Fig. 5. Monthly total solar radiation for the period February 1990 to January 1991.

APT Pictures and Weather Fax Charts

Cloud pictures from polar orbitting NOAA-10 and NOAA-11 satellites and weather fax charts from Molodezhnaya were received during the Expedition. The APT pictures, fax charts and barographic records of the corresponding period were correlated to understand the weather systems, and issue forecasts to different convoys and for determining the frequency of cyclonic storms encircling the continent. Fig. 6A shows a cyclonic system centred at 61° S, 20° E in the satellite picture. The subsequent surface analysis chart (Fig. 6B) received from Molodezhnaya shows a corresponding low pressure system over Schir-

 $Fig.\ 6.\ Sample\ of\ (A)\ Polar\ Orbitting\ NOAA\ Satellite\ Picture.$

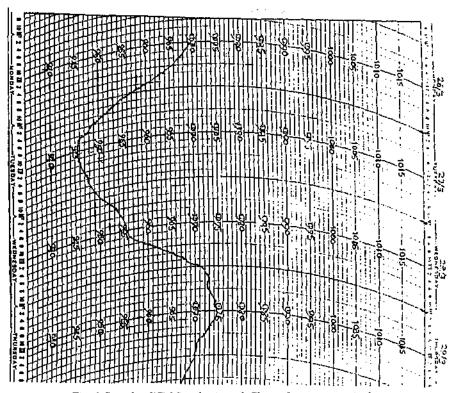


Fig. 6. Sample of(C) Microbarigraph Chart of an extra-tropical system during March 26-28, 1990.

macher ranges. The automatic barographic record for the same period (Fig. 6C) depicts the sharp fall in pressure, measuring about 11 Mb in just 12 hours. The correlation between the three charts clearly illustrates that a low pressure system was existing over the area on March 27, 1990 when Maitri station experienced snowfall and blizzard.

Logistic Support

Using NOAA-10 and NOAA-11 satellite cloud pictures, fax charts and other meteorological parameters, forecasts were issued to all convoys and Humboldt and Petermann camps daily, through HF communication. APT pictures were very useful in locating the synoptic systems and in issuing the forecasts. During summer period METAR/Special reports were issued from Maitri for helicopter operations, as and when requested for.

Comparison of Meteorological Parameters between Maitri and Humboldt Camp

During the geological surveys conducted by GSI team; temperature, pressure and wind observations were recorded at Humboldt which is 1400~M above mean sea level. The

observations have been compared with the corresponding observations taken at Maitri at surface level and 800 Mb level and the same are depicted in Tables 5 & 6.

It may be seen from the Tables 5 & 6 that altitude of the area is very close to 800 Mb isobaric level. The winds in general are stronger over Maitri than Humboldt. The temperatures are much lower at Humboldt as compared to surface temperatures at Maitri but are quite comparable to the 800 Mb level temperatures at Maitri. The reasons for the winds to be stronger over Maitri is that it is closer to the track of extra tropical low pressure systems. The temperature difference is due to the altitude difference of two places.

Blizzards

Antarctica is the home of blizzards. Maitri experienced 25 days of blizzards during the year 1990. During May to December' 89 Maitri experienced blizzards on 9 days only whilst

Table - 5

		rable - 5		
Date		Time 090	00 UTC	
	Hum	boldt	M	aitri
	Surface Pressure(Mb)	Wind Speed (Kts)	Surface Pressure (Mb)	Wind Speed (Kts)
10 Oct.' 90	_	15	_	30
11	_	15	_	30
12	_	25	_	46
13	_	25	_	43
14	_	Calm	_	18
15	_	Calm	_	33
16	_	Calm	_	26
17	840	10	993.3	05
18	823	20	974.3	20
19	821	25	965.6	38
20	813	30	957.4	29
21	808	15	954.3	24
22	811	Calm	958.1	13
23	813	08	960.8	03
24	820	05	966.9	Calm
25	823	08	974.5	Calm

Table 6 : Temperature in $^{\circ}$ C Recorded at

Date	0900	UTC	1200 U	ЛС	800 Mb Level
_	Humboldt	Maitri	I-iumboldt	Maitri	
5 Oct.' 90	-	-9.3	_	-10.5	
6	-18.0	-9.3	-15.0	-8.4	
7	-19.0	-8.8	-16.0	-8.8	
8	-16.0	-7.3	-14.0	-5.7	
9	-16,0	-6.2	-14.0	-4.6	
10	-11.0	-6.5	-10.0	-6.1	
11	-8.0	-6.0	-8.0	-4.7	
12	-6.0	-13,1	-8.0	-11.0	
13	-12.0	-8.7	-9.0	-6.4	
14	-19.0	-2.5	-12.0	+0.2	
15	-17.0	-2.1	-13.0	-0.6	
16	-11.0	-8.4	-8.0	-10.0	
17	-18.0	-8.8	-16.0	-8.1	
18	-12.0	-9.8	-9.0	-10.5	
19	-12,0	-10.0	-10.5	-8.8	
20	-14.0	-4.4	-14.0	-4.5	
21	-19.0	-10.7	-19.5	-6.4	
22	-21.0	-6.9	-16.5	-5.6	
23	-19.0	-9.7	-17.0	-7.8	
24	-20.0	-7.2	-16.0	-10.6	
25	-17.0	-9.4	-13.0	-10.0	
26	-14.0	-8.5	-11.5	-7 4	
27	-19.0	-7.8	-14.0	-6.0	
28	-21.0	-4.6	-13.0	-3.6	

Dakshin Gangotri experienced them on 59 days during the same period. Blizzards are very common over the ice shelf due to availability of loose snow. Maitri is surrounded by morainal land and continental ice-edge having very small amount of loose snow. As such, the frequency and intensity of blizzards is very low over Maitri, as compared to Dakshin Gangotri. Each blizzard has its own characteristics. History of each blizzard has been summarised in Table 7. Table 8 shows comparative figures of blizzards over Maitri and Dakshin Gangotri during 1989 and 1990.

Table 7 History of the Blizzards Recorded at Maitri during January'90 to January'91

	Table 7	nstory of the	BIIZZārds	Kecorde	sa at Man	rı during J	Table 7 History of the Blizzards Recorded at Maith dufing January 90 to January 91.	anuary 91	
S.No.	Duration Dt/Time (UTC)	MSL Pressure (Mb)	re (Mb)	Temperature °C	ture °C	Max Wind (Knots)	Pressure Change	Temperature Change (°C)	Weather
	•	Max	Min	Max	Min	,			
	March 08/0200 to 09/0230	990.3	981.3	4.1-	4.7-	72	9 Mb Fall	6.0 Fall	Snowfall
5,	March 11/1700 to 11/2000	988.3	9.786	-2.0	-4.2	49	0.7 Mb Fall	2.2 Rise	Snowfall
3.	March 27/0730-1230	962.2	959.7	-4.0	-6.3	47	2.5 Mb Fall	2.3 Fall	Snowfall
4.	April 04/2000 to 05/1130	992.8	985.5	-7.0	-13.5	180/47	7.3 Mb Rise	6.5 Rise	1
۶.	April 24/0230-1130	1008.8	1005.6	-13.4	-15.3	110/42	3.2 Mb Rise	1.9 Fall	Snowfall
9	April 25/1400-2120	1016.0	1015.3	-6.7	-10.0	110/42	0.7 Mb Fall	3.3 Rise	Snowfall
7	April 2671745-1815	1008.3	1006.8	-6.7	-10.2	160/45	1.5 Mb Rise	3.5 Rise	
∞.	April 26/1910-1930	1007.9	1006.5	6.9-	-11.0	160/41	2.4 Mb Rise	4.1 Rise	
9.	April.26/2245-2310	1006.2	1005.0	-7.4	-14.5	160/43	1.2 Mb Rise	- 7.1 Rise	
10.	April 29/1030-2230	1027.6	1023.0	-2.5	-5.0	180/55	4.6 Mb Fall	2.5 Rise	Snowfall Proceeding Day
11	May 02/0500-1600	1012.3	1011.0	-4.1	6.9-	140/53	1.3 Mb Fall	2.8 Rise	Snowfall

Establishment

Table 7: Contd.

S.No.	Duration Dt/Time (UTC)	MSL Pressure (Mb)	ire (Mb)	Temper	Temperature °C	Max Wind	Pressure	Temperature	Weather
		Max	Min	Max	Min	(signar)	Silang	Cinduigo (C)	
12.	May 03/0900 to 04/0800	1005.5	1003.3	-3.0	-5.5	140/56	2.2 Rise	2.5 Fall	Snowfall Proceeding Day
13.	May 16/0800-1140	986.1	985.3	-8.4	-13.5	160/41	0.8 Rise	5.1 Rise	Snowfall
14.	May 16/1730-1900	988.1	8.786	-9.5	-10.5	140/39	0.3 Rise	1.0 Rise	Snowfall
15.	May 20/1630 to 21/0130	8.666	994.6	6.6-	-1.4	140/49	5.2 Rise	1.5 Fall	Snowfall
16.	Jun. 02/2000 to 03/0700	9.066	6.986	6.9-	8.6-	140/23	3.7 Rise	2.9 Rise	Snowfall
17.	July 11/0230-1230	988.2	961.3	-6.0	-9.5	140/66	26.9 Rise	3.5 Fall	Snowfall
18.	July 15/0500-1130	1003.4	995.0	-7.8	-16.5	140/54	8.4 Rise	8.7 Fall	I
19.	Sept, 16/0100-0400	965.1	962.5	-20.0	-20.8	110/39	2.6 Rise	0.8 Fall	Snowfall
20.	Sept. 16/0630-0800	5.696	0.896	-20.4	-20.8	110/41	1.5 Rise	0.4 Rise	Snowfall
21.	Oct. 12/1230-1640	978.7	6.976	-10.5	-11.8	140/54	1.8 Fall	1.3 Rise	Snowfall
22.	Oct. 12/2030 to 13/1015	991.7	9.926	4.8-	8.6-	110/64	15.1 Rise	1.4 Fall	Snowfall
23.	Oct. 18/1045-2200	988.4	985.8	-9.5	-11.5	140/48	2.6 Fall	2.0 Fall	Snowfall
24.	Oct. 19/0630-1930	984.2	0.926	-6.8	-10.4	140/72	8.2 Fall	3.6 Fall	Snowfall

Table - 8

Month		No. of Blizzards	
	1989	Maitri 1990	— Dakshin Gangotri
May	1	6	7
June	3	2	6
July	4	2	13
August	0	0	4
September	0	1	4
October	1	4	12
November	0	0	13
December	0	0	0

Conclusions

- (i) A new meteorological observatory was established at Maitri. All the instruments brought with the 9th Expedition were installed and were functioning excellently.
- (ii) Valuable data of various meteorological parameters have been collected for analyses.
- (iii) Ozone-hole investigation has been a specific task of the mission and careful efforts were made to investigate it.
- (iv) It has been investigated that ozone-hole exists at Antarctica during spring season (September and October) and the total ozone reduces to less than half of its value during that time.
- (v) A close liaison with George Forster (Germany) and Syowa (Japan) was maintained for exchange of ozone data for correlation and study.

Acknowledgement

We are very grateful to Dr. S.M. Kulshrestha, Director General of India Meteorology Department, for offering us a chance to work in Antarctica. We record our sincere gratitude to Shri M.G. Gupta, DDGM (Retd), Shri B.R. Avasthi, DDGM and Dr. C.R. Sreedharan, DDGM for guiding us during the Expedition. We also record our thanks to Shri R. Ravindra, Station Commander and all members of the Station especially Hav R. Raghunathan and Hav N. Selvaraj from Corps of Engineers for helping us in various ways.