Tenth Indian Expedition to Antarctica, Scientific Report, 1995 Department of Ocean Development, Technical Publication No, 8, pp. 71-91

Meteorological Studies Carried Out at Maitri During Winter Period of Tenth Indian Scientific Expedition to Antarctica

P.M.GULHANE AND S.S. KATARIYA

India Meteorological Department

Abstract

The Antarctic continent is the coldest, windiest, driest and least accessible of all the continents. It plays an active role in shaping the global climate and is significantly responsible for future climatic changes. Extensive meteorological observations, comprising surface and upper-air parameters, were taken on ship during voyage, from Goa to Antarctica and back, and at Maitri during 1991. In this report the studies carried out at Maitri are discussed.

The interesting features with respect to surface observations, total ozone and vertical profiles of ozone during the period 01.01.91 to 31.12.91 have been discussed. August was the coldest month with a lowest monthly mean air temperature of-17.0°C and extreme lowest air temperature of-30.6°C of the year was observed on 2nd August 1991. There were in all 15 blizzards spanned over 27 days during 1991. Warmer air temperatures were experienced during blizzards. The infrared (terrestrial) radiation disposition in the different layers of upper atmosphere have also been discussed.

Introduction

Meteorological programme of the Tenth Indian Antarctic Expedition (both summer and winter) was mainly the continuation of the long term programme of IMD introduced in earlier expeditions.

The Tenth Indian Antarctic Expedition left Goa from Marmugao port on 27.11.90 and reached Antarctic ice-shelf near Dakshin Gangotri station on 20.12.90. India Meteorological Department contingent consisted of two members for winter and one member for summer.

Objectives

- (i) Recording of 3 hourly synoptic observations and to disseminate 6 hourly synoptic data to IMD, New Delhi for its global telecommunication network exchange on real-time basis.
- (ii) To investigate ozone-hole phenomena during Austral spring over Antarctica.
- (iii) To monitor surface ozone.

(iv) To measure infrared radiative fluxes in the upper atmosphere.

To accomplish the above objectives the following meteorological observations were planned:

(a) Onward Cruise

Surface observations at 3 hourly intervals of the parameters such as: surface pressure, wind speed, wind direction, visibility, air temperature, humidity, sea surface temperature, state of the sea etc. and transmission of main synoptic data to IMD, New Delhi on real-time basis.

Radiosonde ascents were taken at the rate of one ascent per clay preferably at 12 Z subject to the suitable surface wind below 30 kts.

(b)At Maitri

- (i) Synoptic observation at 3 hourly intervals and transmission of main synoptic data to IMD, New Delhi on real-time basis.
- (ii) Ozonesonde ascent, one per week, to study the upper-air profile with respect to temperature, humidity and ozone concentration. Ozonesonde data was exchanged with George Forster and Syowa station for comparing the data during ozone-hole period of Antarctica.
- (iii) Radiometersonde: These were attempted before and after the blizzard at the rate of two ascents per month from March to November to study the infrared radiative fluxes in the upper atmosphere.
- (iv) Weather forecast: Outlook of weather for 24 hours was provided for planning the daily activities and maintenance of the station and also during convoy from Maitri to Dakshin Gangotri and back.

In addition to these observations the atmospheric turbidity with sunphotometer on 440 and 640 mm wavelengths, surface ozone and day-to-day maintenance of all the autographic instruments used for continuous record of temperature, wind speed, wind direction, pressure, global solar radiation etc. were carried out.

Results and Discussions of Meteorological Data

A. Mean Sea Level Pressure

As seen from the graph of monthly mean sea level pressure for 1991 (Fig. 1 A), there is no systematic variation of monthly mean sea level pressure. There are significant variations from January to April and gradual variations are observed from April to October followed by steep rise thereafter till December.

The highest maximum mean sea level pressure during 1991 was 1010.5 hPa recorded on 27 December and extreme lowest M.S.L. pressure of 952.1 hPa was

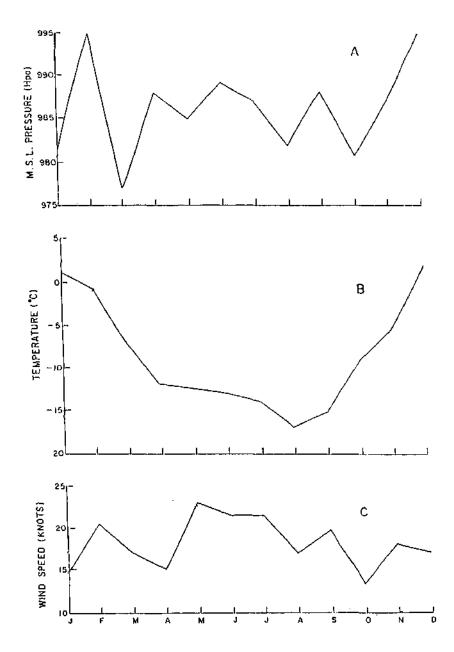


Fig. J. Mean monthly variations of (A) mean sea level pressure (B) surface air temperature and (C) wind speed.

recorded on July 7. The highest mean monthly M.S.L. pressure of 995.1 hPa was attained in December and lowest mean monthly M.S.L. pressure of 977.7 hPa in March. In majority of cases decrease of pressure was associated with bad weather or strong wind speed.

B. Surface Air Temperature

The monthly mean air temperature during 1991 decreased gradually from $+0.9^{\circ}$ C to -0.9° C from January to February (Fig. 1B). Further decrease is steep due to onset of winter till April. From April onwards, the decrease in mean monthly temperature is gradual upto August due to the increased activities of low pressure systems moving West to East encircling Antarctic coast along polar low pressure belt fluctuating north-south. These systems are associated with cyclonic circulation incursing warm and moist air mass from lower latitudes towards polar regions and thereby raising the temperature. The gradual decrease in temperature is also caused by obscured and overcast skies causing obstruction to out-going radiation.

Highest temperature of the year (10.3°C) was recorded on December 28, 1991 during overcast skies alongwith light winds. The lowest temperature (-30.6°C) was attained on August 2 during calm wind and cloud free sky.

The monthly mean, highest maximum and lowest minimum have been compared with those of previous year (1990) recorded at Maitri and Dakshin Gangotri respectively. It is found that the year 1991 was warmer than 1990. The temperature was warmer at Maitri when compared to Dakshin Gangotri by about 10°C to 15°C for all the months. This is due to the orographic feature of the Maitri station.

C. Surface Winds

Wind speed is very important weather parameter in planning day-to-day outdoor activities of the station. There was no systematic variation of the wind speed during 1991.

Highest wind speed recorded during 1991 was 82 kts on September 30 during strong blizzard. The highest monthly mean wind speed of 22.9 kts was attained in the month of May followed by June and July (Fig. 1C). May, June and July were the windiest months during 1991 owing to 10 blizzards spanned over 17 days. There were in all 27 days covered by blizzardic weather. This number is significantly less compared to Dakshin Gangotri station.

October was the best weather month during the year with monthly mean wind speed of 13.4 kts and with only one blizzard lasting for 8 hours duration.

The most predominant wind direction observed during blizzardic weather was SE and ESE al Maitri.

D. Clouds

During blizzardic weather sky remained obscured due to blowing snow. Cloud amounts at Maitri are highly variable in nature from day-to-day. Mainly stratus, strato-cumulus, altostratus, altocumulus, cirrus and cirrocumulus clouds are observed at Maitri. Cumulus with little vertical extent is observed in the northern portion of the horizon. Increase or decrease of cloud amounts is mainly associated with the approach of sub-polar lows and passage of the same.

E. Precipitation

In Antarctica, precipitation in the form of rain or drizzle is a very rare phenomenon. In almost all cases it is in the form of snowfall. During 1991, Maitri experienced 86 days snowfall. It is generally observed before and after the commencement of blizzard or strong winds. As seen from the monthly weather summary for 1991, the month of June experienced 16 days of snowfall followed by December with 12 days. On January 17, 1991 Maitri experienced light rain and drizzle around 1930 to 2030 hours.

Table 1 gives the monthly weather summary during January '91 to December '91 and Table 2 pertains to climatological features observed during 1991.

Upper-air Studies

The standard isobaric height temperatures and humidity have been worked out on the basis of 45 successful ozonesonde ascents taken during 1991. These are summarized in Tables 3 to 6. The following annual variations at almost all pressure levels have been observed.

- (i) The monthly mean heights of all standard pressure levels decrease gradually from middle of summer to the end of the Antarctic autumn months. The standard isobaric heights start increasing from September onward till December. The increase is quite steep.
- (ii) Air temperatures at all standard isobaric levels are maximum in summer and minimum in spring season.
- (iii) The monthly mean heights of tropopause show decrease upto March and increase thereafter till May. It shows gradual decrease thereafter till August (Fig. 2). The annual mean tropopause is at 256 hPa and the corresponding geopotentiometric height of 9449 gpm with annual tropopause temperature - 63.4°C. The tropopause is warmer in summer compared to winter by about 15°C. The monthly mean tropopause temperature shows steep decrease upto May and exhibits an increasing trend with the onset of summer.

			able I: N	Aonthly ation-M	Weathe aitri (89)5514) 70 45	11 44 (ri for the 33 E Ele	Monthly Weather Summary of Maitri for the Period Jan.199 station-Maitri (895514) 70 45 11 44 03 E Elevation: 117 Mtrs	Jan.19 17 Mtr	۲ ۱۵ Le	Table 1: Monthly Weather Summary of Maitri for the Period Jan. 1991 to Dec. 1991 station-Maitri (895514) 70 45 11 44 03 E Elevation: 117 Mtrs
4	M.S.L.pressure (mb)	sure	Air	Air temperature (°C)	ure	Wind (k	nd speed (kts)	Wind speed No. of No. of (kts) Oyc SKC - days days	No. of SKC days	No. of PPTN days	Bliz	Blizzards	Remarks
highest	t lowest	t mean	highest	lowest	mean	тах	max mean				No.	Days	
994.6	.6 960.0	981.8	+8.2	-5.6	6.0+	62	14.8	9	2	∞	0	0	Rain and Drizzle on 17th Jan.
999.3	.3 963.3	994.9	+7.6	-8.5	-0.9	68	20.7	16	7	10	0	0	
997.2	.2 961.3	977.7	+ 1.5	-20.7	-6.9	72	17.1	8	2	10	-	б	
1001.3	.3 975.6	988.2	-4.2	-21.8	-12.1	53	15.1	4	0	7	1	7	
1001.0	.0 967.0	985.2	-2.8	-24.6	-12.5	74	22.9	13	1	7	4	8	
1010.4	.4 967.6	989.7	-3.0	-27.9	-12.9	72	21.5	10	0	16	4	5	
1004.3	.3 952.1	987.5	-4.2	-29.6	-14.2	68	21.5	12	0	10	2	4	
994.7	7 963.6	982.2	-4.7	-30.6	-17.0	64	17.0	٢	0	7	0	0	Fog on 2 Aug.
1008.1	1 969.0	988.0	-1.4	-28.2	-15.2	82	19.7	8	0	٢	7	4	
1006.3	3 965.1	981.1	-1.4	-22.6	-9.2	67	13.4	9	7	1	1	1	
998.5	5 975.5	987.5	+4.8	-13.5	-5.4	64	18.2	9	0	1	0	0	
1010.5	5 985.3	995.1	+10.3	-4.3	+2.0	54	17.1	٢	0	12	0	0	Fog on 15, 16 and 17 Dec.

76

P.M.Gulhane and S.S. Katariya

	1.00.0 21 0.0000	gitar reataries observed during 1991	
S.N.	Phenomena	Value	Date
1)	Highest Maximum Temperature	10.3°C	28 Dec.
2)	Lowest Minimum Temperature	-30.6°C	02 Aug.
3)	Maximum MSL Pressure	1010.5 hPa	27 Dec.
4)	Minimum MSL Pressure	952.1 hPa	07 July
5)	Maximum Wind Speed	82kts	30 Sep.
6)	Warmest month of the year	December with mean temp. of 2.0°C.	
7)	Coldest month of the year	August with mean temp. of-17.0°C.	
8)	Windiest month of the year	May with mean wind speed of 23 kts.	
9)	Windiest day of the year	30 Sep. with mean wind speed of 51 kts.	
10)	Mean temperature of the year	-8.6-C.	
11)	Mean MSL Pressure of the year	986.6 hPa.	
12)	Mean wind speed of the year	18.3 kts.	
13)	Light rain and drizzle		17 Jan. 1991
14)	Warmest day of the year	28 Dec. with mean temp. of 2.0°C.	
15)	Coldest day of the year	02 Aug. with mean temp27.0°C.	
16)	Total number of blizzards	15 with longest blizzard of 70 hrs duration in March 91	
17)	Blizzardous month	May and June with 4 blizzards in each month.	

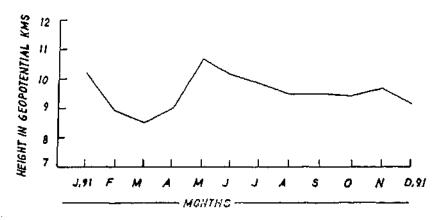


Fig. 2. Antarctic tropopause height variation.

PM.Gulhane and S.S. Katariya

•				P	M.Gu	inane	ana S	.з. ка	tariya					
	03	13.9			I					73.8		21.5		
	02	24.8	30.6		1		I	77.4	67.2	61.4		15.2	28.9	
	07		34.6				I	76.8	64.3	65.8		15.3	28.2	
Levels	10	28.9	37.2	50.9	I	69.2	 +	78.6	65.3	69.5		15.8	28.1	
Table 3:Mean Monthly Upper-air Temperature over Maitri for Standard Isobaric Levels (Station : Maitri, Year: 1991)	15	30.4	40.1	48.5	63.6	74.3	4 78.4	79.4) 73.2	74.6		19.3	29.1	
lard Is	20	31.4	40.3	49.4	61.9	75.2	3 78.4	82.1	73.9	72.7		25.7	28.7	
r Stano	30	33.3	42.1	49.0	62.2	76.1	5 78.3	86.4) 76.1	79.5	52 0	35.8	31.4	
aitri fo	50	36.3	44.0	49.0	64.8	73.5	3 76.5	85.5	76.9	81.6	59.2	50.3	35.6	
er-air Temperature over Mi (Station : Maitri, Year: 1991)	70	38.8	44.2	47.7	62.2	73.6	73.3	82.3	76.1	83.6	67.8	59.3	38.7	
ature o i, Year	100	41.2	45.8	48.0) 58.9	68.6	70.7	7.7.3	9 77.0	82.6	70.2	65.9	41.8	
emper: Maitr	150	43.7	46.5	46.7	\$ 54.9	67.0	67.0	75.1	5 74.9	79.1	70.6	65.5	44.9	
r-air T Station	200	45.8	47.2	(46.9	55.8	65.2	65.1	72.4	67.9 71.5	75.6	69.1	65.0	47.3	
y Uppe (S	250	49.9	49.8	51.0	59.8	62.7	62.1	69.2	67	70.5	65.9	62.9	50.9	
Aonthl	300	45.6	49.4	54.5	58.9	58.9	54.6	609	63.0	64.9	60.6	59.4	51.9	
Mean N	400	34.4	40.4	43.8	46.9	46.3	47.0	49.5	49.7	51.5	46.9	47.8	38.1	lues are minus centigrade
able 3:	500	24.9	30.3	34.9	36.6	36.3	37.9	40.0	37.2 4	41.1	36.3	38.4	28.3	ninus ce
L	009	18.7	22.5	29.2	30.4	27.4	31.0	33.8	26.2	34.5	27.3	28.9	20.0	ues are 1
	700	13.9	16.6	23.1	24.9	17.5	24.6	26.9	23.6	28.9	21.5	21.7	14.1	ture val
	850	4.3	10.0	14.2	17.9	14.9	18.5	19.9	18.5	19.9	18.4	11.8	7.4	tempera
	Month	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	DEC	NB: ALL temperature va

	003		ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	ļ	I	ļ	
	005	64.3	28.3		1		1	16.0 -	16.4 -	23.3 -	37.5 -	43.4 -	- 88.4	
	010	86.2	80.4	35.6 -	58.3 -	21.1	1	19.3	27.1	37.1	40.5	48.8	48.4	
Levels	020	118.6	116.1	64.3	69.5	65.1	82.3	46.1	50.6	51.3	68.0	46.9	119.1	
Table 4: Mean Monthly Partial Pressure of Ozone over Maitri for Standard Isobaric Levels	030	106.7	132.3	98.2	94.7	81.3	112.4	82.9	60.4	46.9	38.0	54.3	125.1	
tandard	050	95.0	136.8	113.7	123.0	135.1	88.2	113.5	88.7	56.3	67.7	49.5	124.4	
tri for St	070	82.3	80.9	106.9	97.2	135.0	136.6	130.3	120.9	68.8	34.7	38.2	101.3	
ver Mai	100	58.0	81.0	78.4	79.6	98.7	129.8	116.4	85.1	61.9	30.2	19.4	26.8	
Ozone o	150	38.1	54.2	57.9	60.8	47.0	62.1	73.8	41.4	48.9	29.5	27.1	20.3	
sure of	200	36.3	52.6	51.6	61.0	35.0	51.1	40.2	24.9	30.3	26.7	21.3	40.3	
tial Pres	250	11.1	44.1	41.9	49.2	27.6	30.5	24.5	14.5	22.0	17.9	16.4	29.8	
ıthly Par	300	9.0	30.1	21.5	26.7	16.4	20.4	19.5	11.9	14.9	12.1	12.5	12.5	nb.
ean Mon	400	10.6	17.1	12.2	21.6	17.4	20.0	23.8	11.8	14.1	12.0	6.7	13.3	are in µr
le 4: M	500	9.3	15.2	14.4	19.7	19.0	19.3	27.4	15.8	15.6	12.3	8.2	13.0	of ozone
Tab	009	10.7	16.8	12.8	20.4	20.6	22.9	29.1	16.1	15.9	14.4	8.9	15.6	oressure (
	700	12.3	11.5	14.1	20.7	23.0	24.3	31.4	16.8	19.2	16.1	9.2	18.1	partial p
	850	11.6	21.5	14.2	23.1	25.3	29.3	38.8	22.2	23.5	17.4	12.5	23.9	values of
	Month	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEPT	OCT	NOV	DEC	NB: All values of partial pressure of ozone are in µmb.

It is found that ground inversions ranging from 2^{0} C to 8^{0} C arc observed from March to September. The inversion is feeble in November and February and disappears in summer period clue to the onset of 24 hours day light.

In most of the ascents from March to October a very feeble inversion in the layer between 750 to 650 hPa was also observed.

Total Ozone

Table 5 gives the daily mean values of total ozone obtained from George burster station about 4 km from Maitri. The following variations have been observed in daily mean total ozone and monthly mean total ozone.

- (i) There are gradual variations in daily mean total ozone from January to April, The tendency of variations are random during most part of the year except in the austral spring wherein a pronounced reduction in total columnar ozone is clearly observed. The lowest daily total ozone values are obtained in decreasing mode and highest values are obtained in increasing mode. The highest daily mean total ozone during 1991 of 358 DU was recorded on November 22 and lowest amount of 158 DU was obtained on September 16 during ozone-hole period.
- (ii) The monthly mean total ozone values have been worked out and summarized in Table 5. These show negligible variation during January, February and March. Large decreasing variations are observed in April, August and September. From October onward the monthly mean total ozone shows increasing trend. The lowest monthly mean total ozone of 196 DU is attained in September and highest value of 312 DU is attained in December,
- (iii) There are three spells of ozone depletion followed by temporary revival of daily total ozone values, There is no systematic variations during the depletion and revival period of "ozone-hole" phenomenon.
- (iv) The daily total ozone values during 1991 are comparable with those of 1987, 1989 and 1990 except the severity of reduction is less marked.

Ozonesonde Studies

The monthly mean values of partial pressure of ozone have been worked out for standard.isobaric levels (Table 4). The following variations are noticed.

- (i) The partial pressure of ozone decreases with height and attains minimum value just before tropopause.
- (ii) In almost all ozonesonde ascents partial pressure of ozone increases with height after tropopause.

				1	vierec	1010	gicui	ыша	ies C	urrie	uoui	<i>u</i> i 1 1 1	<i>u</i> 1111.	••				01
	JAN	285	278	275	277	289	294	301	300	296	299	292	296	299	317	299	308	(Contd.)
	DEC	308	313	314	310	335	308	298	315	338	325	329	319	326	318	323	318	
	NON	172	175	169	168	161	168	176	169	168	175	191	197	246	221	202	210	
	OCT	165	163	180	225	246	261	314	329	324	324	300	243	225	207	205	206	
	SIEFT	244	184	177	193	196	209	226	231	219	223	219		185	212	172	158	
(7)	AUG																233	
0 Jall. 177	JUL		I	I	I	I	I	I	I	I								
(r chou. Jan. 1991 w Jan. 1992)	NUL																	
(remon.	MAY		I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	
	APR	258 -	248 —	250	249 —	263 _	265 —	- 299	256 —	237 —	263 –	262 —	- 271	277 —	287	- 291	275 —	
	MAR	283	274	272	275	274	295	303	279	286	274	295	269	294	307	292	279	
	FEB	312	288	277	271	274	296	286	280	285	284	282	290	302	298	282	279	
	JAN				282	296	295		306	309	295	292	258	276	280	288	283	
	DATE	-	5	m	4	Q	9	7	ω	6	10	11	12	13	14	15	16	

Meteorological Studies Carried out at Maitri...

Table 5: Daily Mean Total Ozone Measurements at George Forster Station (Period: Jan. 1991 to Jan. 1992)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ITAN	FER	D D D	DD V									
6 284 273 255 - 214 167 194 277 7 261 249 - 223 198 171 290 8 283 270 249 - 224 202 176 305 8 285 280 246 - 224 202 176 305 8 275 270 246 - 203 119 203 201 203 2 286 280 235 - 203 212 203 331 2 296 215 - 224 223 212 313 2 296 313 211 - 224 233 310 2 296 - 231 225 133 212 310 2 291 2 2 2 2 2 310 2 211 2 2 <	11170	- I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I	U MIN	AFR	MAY	NUL	JUL	AUG	SEPT	OCT	NOV	DEC	JAN
7 261 248 - 223 196 171 290 8 283 270 249 - 224 202 176 305 3 275 277 246 - 224 202 176 305 2 285 280 236 - 200 236 231 233 231 232 331 231 231 231 231 231 232 331 231 232 231 232 231 232 231 231 232 231 231 231 231 231 231 232 231 231 231 231 231 231 231 231 231 231 231 231 231	286	284	273	255	I			214	167	194	227	307	797
8 283 270 249 - 224 202 176 305 3 275 277 246 - 199 211 238 297 2 285 280 236 - 206 188 232 331 2 286 298 222 - 208 188 232 331 2 286 298 222 - 223 212 208 336 2 286 313 211 - 224 202 312 313 2 286 313 211 - 224 205 312 2 271 - 206 - 223 179 235 310 2 271 - 206 - 224 179 255 312 2 281 2 233 230 232 231 256 310 2	277		261	248	I			223	198	171	290	318	. yor
275 271 246 - 199 211 238 297 2 285 280 236 - 206 18 232 331 2 296 238 215 - 203 212 203 331 2 298 335 211 - 224 223 319 2 298 313 211 - 204 205 312 319 2 271 - 206 - 224 203 310 2 211 - 206 - 224 203 310 2 211 - 206 - 223 179 257 310 280 306 227 - 229 170 257 291 310 280 261 - 233 230 - 223 291 310 281 263 231 -	278	283	270	249	Ι			224	202	176	302	333	200
285 280 286 - </td <td>273</td> <td>275</td> <td>277</td> <td>246</td> <td>I</td> <td></td> <td></td> <td>199</td> <td>211</td> <td>238</td> <td>2000</td> <td>о 1 С</td> <td>167</td>	273	275	277	246	I			199	211	238	2000	о 1 С	167
26 29 22 - 223 212 208 358 358 358 358 358 358 358 358 358 358 358 359 359 359 359 359 359 359 359 359 359 350	262	285	280	236	I			208	188	232	331	105 271	062
5 298 335 215 - 200 201 202 201 201 202 201 203 203 203 203 203 203 203 203	266	296	298	222	Ι			223	212	208	35 C	170	70C
28 313 211 - 234 205 232 309 271 206 - 229 179 252 312 280 306 - 218 - 225 183 235 310 280 305 222 - 198 177 247 305 295 267 237 - 229 165 231 305 295 267 237 - 229 165 247 305 293 230 - - 229 165 198 310 263 263 - 202 162 198 323 264 - 220 - 220 191 323 270 283 250 - 244 - 191 323	265	298	335	215	I			224	223	212	319	319	067
7 271 206 - 229 179 252 312 280 306 222 - 225 183 235 310 280 306 222 - 198 177 247 305 295 267 237 - 229 165 221 305 295 267 237 - 229 165 231 305 295 267 237 - 229 165 291 305 295 263 - 202 165 198 310 263 - 203 - 202 162 323 263 - - 202 - 172 323 263 - - 201 - 172 323 287 283 250 - 244 - 181	276	298	313	211	I			234	205	232	306	311	000 080
218 - 225 183 235 310 280 306 222 - 198 177 247 305 295 267 237 - 229 165 222 291 295 267 237 - 229 165 222 291 253 230 - 200 - 202 162 305 263 - 230 - 202 162 198 310 263 - - 220 - 243 - 172 323 287 283 250 - - 244 - 181 - 287 283 250 - 221 196 229 247	287	271		206	I			229	179	252	312	319	286
280 306 222 - 198 177 247 305 295 267 237 - 229 165 222 291 295 267 237 - 229 165 222 291 253 230 - - 202 162 198 310 263 - 263 - 200 - 203 323 263 - 263 - 220 - 172 323 287 283 250 - 249 - 181 247	283			218	I			225	183	235	310	308	286
295 267 237 - 229 165 222 291 253 230 - 202 162 198 310 263 - 203 - 220 - 172 323 263 - - 220 - 203 - 323 279 - - 220 - 172 323 287 283 250 - 244 - 181	285	280	306	222	I			198	177	247	305	287	292
253 230 - 202 162 198 310 263 - 20 - 172 323 264 - 244 - 181 287 283 250 - 221 196 229 247	278	295	267	237	I			229	165	222	291	280	00E
263 - 220 - 172 323 259 - 244 - 181 287 283 250 - 221 196 229 242	301		253	230	I			202	162	198	310	278	ΕLC
259 - 244 - 181 287 283 250 - 221 196 229 242	306		263		I			-		172	323	283	27R
287 283 250 – 221 196 229 242	289		259		Ι					181		289	278
1	284	287	283	250	I			221	196	229	242	312	292

P.M.Gulhane and S.S. Katariya

Table 5 : Contd

Meteorological Studies Carried out at Maitri

					8								
	Ŋ	37042	36428			I			31952	31809		36578	36966
	10	32122	31455	30710		28524 -		27456 -	28251	27586		30854	32059
	15	29233	28685	28057	27042 -	26141	26089 -	25154	25703	25206		27754	29161
	20	27197	26725	26092	25264	24471	24451	23535	24018	23674		25743	27075
	30	24342	23968	23471	22766	22128	22143	21357	21667	21281	22629	22863	24365
	50	20781	20517	20127	19517	19053	19228	18535	18731	18409	19098	19421	20796
	70	18463	18252	17936	17460	17155	17157	16705	16806	16538	17045	17325	18502
(1661 :	100	16031	15863	15579	15243	15075	15056	14660	14709	14557	14875	15087	16037
i; Year	150	13293	13207	12901	12797	12635	12630	12345	12371	12279	12473	12625	13311
(Station : Maitri; Year : 1991)	200	11373	11297	10999	10860	10894	10867	10654	10687	10577	10796	10878	11411
(Station	250	9921	9836	9533	9454	9525	9532	9333	9358	9273	9412	9512	9919
	300	8724	8641	8359	8315	8389	8395	8233	8249	8174	8332	8378	8756
	400	6757	6723	6481	6459	6529	6535	6402	6420	6364	6483	6526	6825
	500	5163	5164	4954	4945	5014	5028	4911	4917	4878	4966	5021	5254
	009	3818	3845	3664	3659	3724	3720	3649	3643	3621	3671	3740	3923
	700	2652	2532	2546	2555	2601	2615	2550	2523	2530	2550	2618	2705
	850	1160	1223	1099	1123	1155	1183	1133	1091	1117	1105	1159	1272
	Month	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEPT	OCT	NON	DEC

Table 6: Mean Height of Standard Isobaric Levels in Geopotential Meters (Station : Maitri; Year : 1991)

P.M. Gulhane & S.S. Katariya

- (iii) The variations in partial pressure of ozone are gradual or negligible upto tropopause compared to those in the ozone maxima layer.
- (iv) Maximum ozone concentration is observed in a layer ranging between 18 to 25 km height,
- (v) The height of ozone maxima decreases steeply from 25 km in January to 16 km in June. Further variations in the height of ozone maxima are gradual upto August and steep increase thereafter till December. This indicates that during polar nights the ozone maximas are attained at a lower height compared to summer, autumn and spring.
- (vi) The monthly mean temperatures at ozone maximas have been worked out for 1991. These show steep decrease upto July and remain low till September followed by steep increase during November and December.
- (vii) During ozone-hole period the depletion occurs in the maximum ozone layer, stretching it vertically upward establishing double maxima, one at 16-18 km and other in 22-25 km layer. This is illustrated in Fig. 3.
- (viii) Fig. 4 shows the ozone profiles during maximum ozone period (May), depletion period (September) and building up period (December). The ozone depletion commenced in the first week of September and reduced to 40% by third week of September. During the second week of November ozone concentration started building up and got fully revived by December.

Radiometersonde Studies

The thermal radiant energy received from the sun by earth and its atmosphere provides the necessary driving force for the general atmospheric circulation. The actual radiation processes in the atmosphere are extremely complex in nature. The radiance from adjoining layers undergoes complex changes due to the selective absorption mostly by the minor atmospheric gaseous constituents and the result of such interactions is what we measure as the ambient temperature.

The solar energy received by earth and its atmosphere is first converted into potential energy and then to kinetic energy. The phenomena involving circulation of the atmospheric evolution and the existence of fossil fuels are totally dependent on solar energy.

The occurrence of spring time depletion in total ozone amount in Antarctica due to infra-red radiational cooling of the upper atmosphere below -80° C, facilitates the formation of polar stratospheric clouds (PSCs). The effect of the PSCs is two fold. Firstly, they extract nitric acid (HN0₃) from air, thereby removing the check over chloric oxide (ClO) cycle. Secondly, chlorine nitrate can react with HC1 on the surface of the cloud particles much more faster and effectively than in the air to form

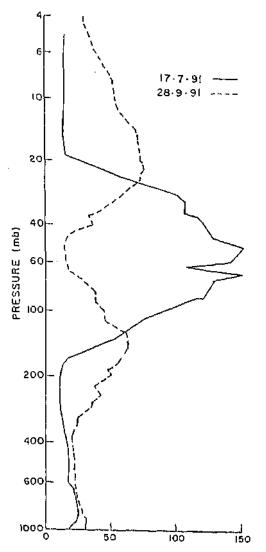


Fig. 3. Partial pressure of ozone during ozone hole period and maximum ozone period.

Cl2 and HNO3, This releases chlorine gas which can accumulate and survive in polar dark period until the sun returns in the spring when the sunlight breaks it into chlorine atoms which are ready to destroy ozone, Taking all these into account, the measurement of infra-red radiative fluxes in the upper reaches of the atmosphere are very important, However, this particular parameter has not been given due importance.

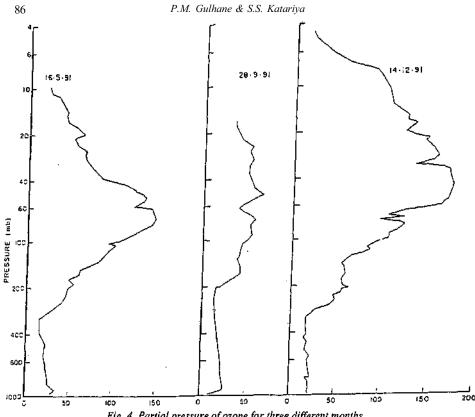


Fig. 4. Partial pressure of ozone for three different months.

During 1991, 14 successful radiometersonde ascents have been attempted from April onward to November and monthly, seasonal and annual values have been presented in Tables 7,8 and 9. The following variations have been observed:

- (i) In the troposphere the water vapour present in various concentrations and cloud layers of stratiform or high cirrus type have a overshadowing role in the modification of the radiation field, at any given instances.
- (ii) The upward terrestrial radiation and downward terrestrial radiation increase with height to varying degrees. The net terrestrial radiation decreases with height.
- (iii) The vertical profile of the upward radiation shows decrease near the tropopause level. The field is nearly steady in the lower stratosphere due to its near isothermal temperature profile.
- (iv) The decreasing tendency of the upward radiative fluxes is arrested in the lower stratosphere and the upward radiation starts increasing thereafter.
- (v) The net radiation at the surface is centered around 40 Wm^{-2} .

Mbs/ Months	APR	МАҮ	NUL	IUL	AUG	SEPT	OCT	NOV	AUTUMN	WINTER	SPRING	ANNUAL
SURFACE	39.9	46.7	67.1	30.8	8.5	16.4	64.2	50.0	43.3	41.5	36.7	40.7
950	24.4	37.3	56.7	32.0	32.7	40.7	22.0	75.9	30.9	44.6	44.8	40.7
006	50.9	74.5	59.4	20.9	49.1	38.9	84.0	115.4	62.7	49.5	69.3	59.0
850	42.9	55.7	62.6	27.3	49.9	59.7	118.3	84.1	49.3	52.4	80.5	59.5
800	69.2	54.5	67.9	22.1	56.5	39.5	100.6	69.7	61.9	56.5	62.3	59.7
750	89.1	95.2	72.4	43.0	63.1	65.1	95.0	124.9	92.2	64.4	87.5	78.9
700	91.9	111.2	88.9	110.0	69.3	87.9	113.5	117.8	101.7	85.9	101.8	94.9
650	105.3	116.6	97.9	116.1	87.2	81.9	120.2	123.6	110.9	94.9	101.9	101.5
600	113.2	138.4	100.9	132.3	91.5	93.9	123.0	123.9	125.8	103.0	110.7	111.7
550	129.3	157.9	113.0	123.9	97.3	107.7	145.9	1325	143.5	109.6	123.5	123.2
500	135.1	158.3	118.9	126.7	105.7	103.4	140.3	145.1	146.7	115.4	125.5	127.2
450	132.5	156.1	118.2	145.2	114.5	105.9	154.0	149.1	144.3	121.5	128.7	130.1
400	136.1	151.2	143.9	147.7	116.7	121.9	164.1	141.2	143.7	135.5	137.3	138.3
350	127.8	151.5	123.7	153.7	123.1	124.9	176.1	153.5	139.6	145.2	144.8	143.5
300	137.0	159.3	160.4	155.8	120.7	115.8	173.0	165.3	148.1	146.1	142.5	145.7
250	'124.5	172.2	139.5	173.2	104.6	99.5	182.1	145.5	148.4	133.5	131.7	137.2
200	142.4	174.7	139.5	120.5	98.3	89.2	154.6	155.6	158.6	122.6	122.1	132.7
175	146.8	176.5	139.4	125.9	104.7	94.3	150.5	160.2	161.6	125.6	124.8	135.7
150	139.3	178.5	133.0	124.6	120.9	101.5	182.2	170.4	158.9	117.3	138.9	135.3
125	139.9	174.1	128.7	112.3	94.2	111.7	177.5	178.2	157.0	114.5	144.8	135.3
100	151.9	167.3	156.9	87.8	106.7	93.3	153.3	167.7	159.6	128.6	126.9	137.0
75	144.6	162.3	159.8		134.3	92.7	163.3	170.0	156.6	149.6	129.7	144.7
50	141.0	170.8	156.1		142.3	142.2	153.7	195.1	160.9	150.6	163.7	156.9
25	170.6	187.8	199.8						182.1	199.8	1	186.5

SURFACE 950	APR	MAY	NUL	JUL	AUG	SEPT	OCT	NOV	AUTUMN	WINTER	SPRING	ANNUAL
950	311.8	307.1	310.5	345.8	258.2	320.8	390.8	478.3	309.1	0.000	777	3762
	197.0	265.5	286.1	301.4	240.5	263.1	273.4	370.1	231.2	0.273 4	2005	266.8
006	289.3	267.7	275.3	274.4	221.1	226.7	265.8	353.4	278.5	257.0	768.7	266.4
850	280.7	250.7	262.3	275.9	212.9	225.7	267.1	311.8	265.8	248.1	2576	7559
800	277.9	243.1	256.1	257.4	206.4	194.8	250.4	300.2	260.5	240.0	2351	7.002 2.44.3
750	272.3	240.3	248.8	248.7	201.4	189.3	228.3	289,5	256.3	233.0	224.1	1 737 1
700	260.9	236.4	245.1	237.6	195.7	202.5	232.5	285.4	248.7	227.4	230.9	2345
650	264.9	230.8	245.3	228.6	195.1	175.4	238.0	273.3	247.9	226.3	215.5	229.4
600	255.5	227.9	241.7	222.2	192.1	185.6	227.4	266.9	241.7	221.9	216.4	226.0
550	251.3	229.4	236.2	213.0	186.9	182.5	227.6	250.4	240.3	215.8	210.8	
500	234.5	218.1	227.7	207.2	183.8	172.9	215.4	249.5	226.3	210.0	202.7	
450	222.0	217.5	217.7	208.5	180.3	156.7	212.0	241.5	217.5	203.7	191.7	204.2
400	206.7	202.3	215.3	195.7	170.5	164.2	202.5	223.9	204.5	197.1	188.7	196.8
350	192.3	198.1	200.3	189.9	171.2	153.7	201.7	206.8	195.2	188.9	178.9	187.9
300	191.8	201.6	195.7	185.3	159.6	145.9	185.8	206.4	196.7	181.9	171.0	
250	183.0	213.2	176.3	170.9	148.3	141.5	176.0	183.4	198.3	165.9	160.6	
200	193.9	208.0	174.1	135.9	138.1	119.7	145.8	184.7	200.9	150.7	142.5	
175	190.5	209.5	171.3	141.3	133.8	117.8	150.3	192.7	200.0	153.8	144.7	
150	179.3	209.1	165.4	143.3	127.7	119.7	156.3	204.0	194.2	149.2	149.9	
125	182.5	204.7	164.1	136.3	127.6	118.8	155.9	244.8	193.6	147.3	159.6	
100	183.1	191.7	176.1	136.3	129.6	115.4	151.5	273.0	187.4	157.5	163.8	
75	154.1	187.5	183.4		141.2	123.0	158.8	290.7	176.4	166.5	176.4	
50	153.1	191.5	172.9		144.0	143.1	157.8		178.7	161.4	150.5	
25	164.0	199.5	202.8						187.6	202.8		

88

P.M.Gulhane and S.S. Katariya

Mbs/	APR	MAY	NUL	JUL	AUG	SEP	OCT	NOV	AUTUMN WINTER	WINTER	SPRING	SPRING ANNUAL
SURFACE	271.9	260.5	243.5	315.0	249.6	291.2	326.7	228.3	266.2	257.5	341.1	283.9
950	172.6	228.1	229.4	269.4	207.7	222.5	251.4	294.3	200.3	228.8	247.7	226.1
006	238.5	193.1	215.9	253.5	171.7	187.9	181.8	237.9	215.8	207.5	198.9	207.4
850	228.8	195.3	199.7	248.6	163.1	166.1	148.8	227.7	216.5	195.7	177.2	196.5
800	208.7	178.7	188.2	235.3	149.9	155.3	149.8	230.5	193.7	183.3	172.7	183.2
750	183.2	145.1	176.4	205.7	138.3	124.1	133.2	164.6	164.2	168.6	136.5	158.2
700	169.0	125.1	156.3	127.6	126.3	114.9	119.0	167.6	147.1	141.5	129.1	139.6
650	159.7	114.3	152.2	112.5	109.3	92.5	117.9	149.7	136.9	131.4	113.1	127.8
600	142.3	89-5	140.8	89.8	100.6	91.7	104.4	135.0	115.9	118.9	105.1	114.3
550	122.1	71.6	123.2	89.1	89.5	74.9	81.8	117.9	96.8	106.3	87.3	98.2
500	99.5	56.9	109.6	80.6	78.1	64.5	75.1	104.4	79.7	94.3	77.1	85.2
450	89.5	55.9	92.8	63.3	65.7	50.9	58.0	92.5	73.2	78.9	63.1	72.7
400	70.5	51.1	71.3	51.0	53.8	42.3	38.4	82.7	60.8	62.1	51.4	58.7
350	64.5	46.7	43.3	36.2	48.1	28.7	25.6	53.3	55.6	43.9	34.1	44.3
300	54.7	42.3	35.4	29.5	39.7	25.1	12.8	41.2	48.5	35.8	26.1	36.7
250	58.8	40.9	36.6	2.3	43.6	42.0	6.1	37.9	49.9	32.6	28.9	36.4
200	51.3	33.3	34.6	15.4	39.9	30.5	8.8	29.2	42.4	33.1	20.3	32.1
175	43.7	32.9	31.9	15.4	29.1	23.5	0.2	32.5	38.3	28.2	19.8	28.7
150	39.9	30.7	32.4	18.9	37.7	17.7	25.9	33.6	35.3	31.8	10.8	26.8
125	42.5	30.7	35.3	24.0	33.7	7.1	21.6	9.99	36.6	32.9	14.8	28.8
100	31.4	24.5	19.2	48.4	22.9	22.1	1.8	105.2	27.9	25.3	36.7	29.4
75	9.7	24.9	23.5		7.9	35.4	4.5	120.6	19.8	16.9	20.6	27.5
50	12.2	20.7	16.3		1.7	0.9	4.1		17.8	10.8	2.5	11.2
25	6.6	11.7	3.0		6.2				10.0	4.6		5.2

P.M. Gulhanc & S.S. Katariya

- (vi) The upward radiative fluxes are highest in autumn and lowest in spring.
- (vii) The net terrestrial radiation generally increases with height but the rate of increase reduces just below the tropopause and increases in the stratosphere.
- (viii) The downward terrestrial radiation at the tropopause is very small compared to upward terrestrial radiation and net terrestrial radiation.
- (ix) The lowest temperatures attained due to radiational cooling below -80°C during austral spring in the higher reaches of the atmosphere, facilitates the formation of polar stratospheric clouds which provide surfaces to undergo heterogeneous chemical reactions resulting in the production of chlorine gas; which survives in the cold dark period of polar nights.

This chlorine gas molecules get dissociated with the return of the sun in spring into chlorine atoms ready to destroy ozone catalytically.

Conclusions

- 1. At Maitri, August was the coldest month during 1991. Both lowest monthly mean air temperature $(-17,0^{\circ}C)$ and extreme lowest air temperature $(-30.6^{\circ}C)$ were recorded in August.
- 2. Highest mean sea level pressure attained in 1991 was 1010.5 hPa in December and the lowest 952.1 hPa in July.
- 3. Ozone-hole at Maitri started developing in the second week of September and got revived by first week of November. The lowest daily mean total ozone recorded at George Forster station, 4 km from Maitri, was 158 DU on September 16. The corresponding depletion in the partial pressure of ozone was around the level of maxima in the stratosphere found in the ozonesonde ascent attempted on September 17 of 58.2 NBar and 57.0 NBar on November 2, 1991.
- 4. The height of almost all standard isobaric levels was highest in summer (December, January and February) and lowest in spring (September, October and November). The annual mean tropopause was at 256 hPa level at the height of 9449 gpm and -63.9°C air temperature. Temperature of tropopause was highest in summer and lowest in winter.
- Maximum ozone concentration was attained at a much lower height in winter than summer. Similarly, temperature at ozone maxima was lowest in winter than summer.
- 6. Based on total ozone observations at George Forster station, total ozone varies in amount hour to hour, day to day, month to month and season to season.

- 7. Longest duration blizzard of the year of about 3 days spanned over 70 hours was experienced in March. Highest maximum wind speed of the year 82 kts was experienced in September during strong blizzard. May had maximum number of blizzard days and January, February, August, November and December were the months having no blizzardic activity.
- 8. The mean temperature, the extreme highest and lowest temperatures of the year 1991 have been compared with those of 1990. It is observed that the year 1991 was warmer than 1990.

Acknowledgements

We are grateful to Director General of Meteorology for sponsoring us to participate in Tenth Indian Scientific Expedition to Antarctica as winter team members. We record our sincere gratitude to Shri B.R. Avasthi and Dr C.R. Sreedharan, Dy. Director Generals of Meteorology for their guidance and suggestions during the Expedition.

We also thank leaders and all members of Ninth, Tenth & Eleventh Expeditions for their help at each and every moment for filling balloons, releasing upper-air ascents and full cooperation in transporting hydrogen gas cylinders from Dakshin Gangotri to Maitri station.